Refine
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- GWAS (1)
- antiepileptic drugs (1)
- antiseizure (1)
- behavioral adverse events (1)
- drug‐resistant epilepsy (1)
- epilepsy (1)
- focal seizures (1)
- genetic generalized epilepsy (1)
- hotspot loci (1)
- lamotrigine (1)
Institute
- Medizin (6)
Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.
Background: Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement ‘hotspot’ loci. However, microdeletion burden not overlapping these regions or within different epilepsy subtypes has not been ascertained.
Objective: To decipher the role of microdeletions outside hotspots loci and risk assessment by epilepsy subtype.
Methods: We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1366 patients with genetic generalised epilepsy (GGE) in addition to two sets of additional unpublished genome-wide microdeletions found in 281 patients with rolandic epilepsy (RE) and 807 patients with adult focal epilepsy (AFE), totalling 2454 cases. Microdeletions were assessed in a combined and subtype-specific approaches against 6746 controls.
Results: When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted p=1.06×10−6,OR 1.89, 95% CI 1.51 to 2.35). Epilepsy subtype-specific analyses showed that hotspot microdeletions in the GGE subgroup contribute most of the overall signal (adjusted p=9.79×10−12, OR 7.45, 95% CI 4.20–13.5). Outside hotspots , microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted p=9.13×10−3,OR 2.85, 95% CI 1.62–4.94). No additional signal was observed for RE and AFE. Still, gene-content analysis identified known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes across epilepsy subtypes that were not deleted in controls.
Conclusions: Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor contribution in the aetiology of RE and AFE.
Aim: Pharmacoresistance is a major burden in epilepsy treatment. We aimed to identify genetic biomarkers in response to specific antiepileptic drugs (AEDs) in genetic generalized epilepsies (GGE). Materials & methods: We conducted a genome-wide association study (GWAS) of 3.3 million autosomal SNPs in 893 European subjects with GGE – responsive or nonresponsive to lamotrigine, levetiracetam and valproic acid. Results: Our GWAS of AED response revealed suggestive evidence for association at 29 genomic loci (p <10-5) but no significant association reflecting its limited power. The suggestive associations highlight candidate genes that are implicated in epileptogenesis and neurodevelopment. Conclusion: This first GWAS of AED response in GGE provides a comprehensive reference of SNP associations for hypothesis-driven candidate gene analyses in upcoming pharmacogenetic studies.
Background Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement “hotspot” loci. However, deciphering their role outside hotspots and risk assessment by epilepsy sub-type has not been conducted.
Methods We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1,366 patients with Genetic Generalized Epilepsy (GGE) plus two sets of additional unpublished genome-wide microdeletions found in 281 Rolandic Epilepsy (RE) and 807 Adult Focal Epilepsy (AFE) patients, totaling 2,454 cases. These microdeletion sets were assessed in a combined analysis and in sub-type specific approaches against 6,746 ethnically matched controls.
Results When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted-P= 2.00×10-7; OR = 1.89; 95%-CI: 1.51-2.35), where the implicated microdeletions overlapped with rarely deleted genes and those involved in neurodevelopmental processes. Sub-type specific analyses showed that hotspot deletions in the GGE subgroup contribute most of the signal (adjusted-P = 1.22×10-12; OR = 7.45; 95%-CI = 4.20-11.97). Outside hotspot loci, microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted-P = 4.78×10-3; OR = 2.30; 95%-CI = 1.42-3.70), whereas no additional signal was observed for RE and AFE. Still, gene content analysis was able to identify known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes affected in more than one epilepsy sub-type but not in controls.
Conclusions Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor to negligible contribution in the etiology of RE and AFE.
Objective To evaluate the success of initiation of adjunctive brivaracetam in patients who required a change in antiepileptic drug (AED) regimen and substituted at least one AED with brivaracetam. Methods In this retrospective noninterventional study conducted in specialized epilepsy centers across Germany, patients initiated adjunctive brivaracetam between February 15, 2016, and August 31, 2016, as part of an intended change in AED regimen. The primary effectiveness variable was the proportion of patients who continued on brivaracetam after 3 months, and withdrew at least one AED either before or within 6 months after brivaracetam initiation. Results Five hundred and six patients had at least one brivaracetam dose and were included in the safety set (SS). Four hundred and seventy patients started to reduce the dose of one AED before/after brivaracetam initiation, had at least one concomitant AED at brivaracetam initiation, and were included in the full analysis set (FAS) for effectiveness analyses. At baseline, patients had a median of seven lifetime AEDs and a median of 3.8 seizures/28 days. In the SS, 85.2% of patients withdrew one AED before/after initiation of brivaracetam, most commonly levetiracetam (49.4%). 46.2% of patients substituted another AED with brivaracetam within 24 hours (fast withdrawal). The proportions of patients (FAS) who continued on brivaracetam after 3 and 6 months and withdrew one AED were 75.5% and 46.6%, respectively. After 6 months, 32.1% of patients were 50% responders; 13.0% were seizure‐free. In the SS, 34.6% of patients reported treatment‐emergent adverse events (TEAEs); 21.9% had TEAEs that were assessed by the treating physician as drug‐related. Incidences of behavioral AEs before (3‐month baseline) and after brivaracetam initiation in patients who withdrew levetiracetam were 19.2% and 8.0%, respectively (5.0% and 7.7% in patients who withdrew other AEDs). Significance Brivaracetam was effective and well‐tolerated in patients who required a change in AED drug regimen and initiated adjunctive brivaracetam in German clinical practice.
Objective: The term ‘precision medicine’ describes a rational treatment strategy tailored to one person that reverses or modifies the disease pathophysiology. In epilepsy, single case and small cohort reports document nascent precision medicine strategies in specific genetic epilepsies. The aim of this multicentre observational study was to investigate the deeper complexity of precision medicine in epilepsy. Methods: A systematic survey of patients with epilepsy with a molecular genetic diagnosis was conducted in six tertiary epilepsy centres including children and adults. A standardised questionnaire was used for data collection, including genetic findings and impact on clinical and therapeutic management. Results: We included 293 patients with genetic epilepsies, 137 children and 156 adults, 162 females and 131 males. Treatment changes were undertaken because of the genetic findings in 94 patients (32%), including rational precision medicine treatment and/or a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms. There was a rational precision medicine treatment for 56 patients (19%), and this was tried in 33/56 (59%) and was successful (ie, >50% seizure reduction) in 10/33 (30%) patients. In 73/293 (25%) patients there was a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms, and this was successful in 24/73 (33%). Significance: Our survey of clinical practice in specialised epilepsy centres shows high variability of clinical outcomes following the identification of a genetic cause for an epilepsy. Meaningful change in the treatment paradigm after genetic testing is not yet possible for many people with epilepsy. This systematic survey provides an overview of the current application of precision medicine in the epilepsies, and suggests the adoption of a more considered approach.