Refine
Document Type
- Article (6)
- Contribution to a Periodical (2)
- Conference Proceeding (1)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Frankfurt (1)
- Frankfurt / Universität (1)
- Frankfurt <Main> / Universität (1)
- Gerlach (1)
- Otto (1)
- Physik (1)
- Physiker (1)
- Stern (1)
- Walther (1)
- attosecond spectroscopy (1)
Der Nobelpreisträger Hans Albrecht Bethe war einer der ganz großen Physiker des 20. Jahrhunderts. Er gilt als einer der Väter der modernen Quantenphysik. In seiner Bedeutung für die Entwicklung der modernen Physik kommt er selbst Werner Heisenberg oder Max Planck sehr nahe. Er ist in Frankfurt aufgewachsen, hat hier das Goethe-Gymnasium besucht und an der Universität Frankfurt studiert. 1933 musste er emigrieren, da seine Mutter jüdischen Glaubens war. In seiner Heimatstadt Frankfurt ist er bisher fast unbekannt geblieben. Aus Sorge, dass Hitler-Deutschland »die Bombe« zuerst bauen könnte, unterstützte Bethe die USA bei der Entwicklung der Atombombe. Robert Oppenheimer holte ihn 1941 zum Manhattan Project nach Los Alamos (New Mexico). Hans Bethe war der führende theoretische Konstrukteur der Bombe. Doch Zeit seines Lebens glaubte er, damit das Falsche getan zu haben. Nach dem Krieg engagierte er sich für die Rüstungskontrolle. Bethe initiierte 1959 die Genfer Konferenz führender Forscher zur Empfehlung eines kontrollierten Teststoppabkommens und beriet den damaligen US-Präsidenten Dwight Eisenhower bei Fragen zur Einstellung von Kernwaffenversuchen. Er war in den USA und weltweit ein Wissenschaftler mit großem politischem und moralischem Einfluss. ...
Umzug des Fachbereichs Physik steht bevor : das Stern-Gerlach-Zentrum für experimentelle Physik
(2004)
Time resolved measurements of the biased disk effect at an Electron Cyclotron Resonance Ion Source
(1999)
First results are reported from time resolved measurements of ion currents extracted from the Frankfurt 14 GHz Electron Cyclotron Resonance Ion Source with pulsed biased-disk voltage. It was found that the ion currents react promptly to changes of the bias. From the experimental results it is concluded that the biased disk effect is mainly due to improvements of the extraction conditions for the source and/or an enhanced transport of ions into the extraction area. By pulsing the disk voltage, short current pulses of highly charged ions can be generated with amplitudes significantly higher than the currents obtained in continuous mode.
A small electrostatic storage ring is the central machine of the Frankfurt Ion Storage Experiments (FIRE) which will be built at the new Stern-Gerlach Center of Frankfurt University. As a true multiuser, multipurpose facility with ion energies up to 50 keV, it will allow new methods to analyze complex many-particle systems from atoms to very large biomolecules. With envisaged storage times of some seconds and beam emittances in the order of a few mm mrad, measurements with up to 6 orders of magnitude better resolutions as compared to single-pass experiments become possible. In comparison to earlier designs, the ring lattice was modified in many details: Problems in earlier designs were related to, e.g., the detection of light particles and highly charged ions with different charge states. Therefore, the deflectors were redesigned completely, allowing a more flexible positioning of the diagnostics. Here, after an introduction to the concept of electrostatic machines, an overview of the planned FIRE is given and the ring lattice and elements are described in detail.
The COLTRIMS Reaction Microscope C-REMI can image the momentum vectors of all emitted charged fragments in an atomic or molecular reactions similar to the bubble chamber in high energy particle physics. C-REMI can detect fragments with “zero” kinetic energy in an ultrahigh vacuum environment by projecting them with weak electromagnetic fields onto position-sensitive detectors. Geometrically a nearly 4π collection solid angle and a nearly 50% efficiency for a fivefold multi-coincidence can be achieved. Measuring time-of-flight and detector position the momenta of the fragments can be measured with excellent resolution (<0.01 a.u.; see A1 in the Appendix). Thus, multivector correlations in momentum space are measured, which provide insight into the entangled dynamics of atomic and molecular quantum systems. From these vector-correlations phases and energies can be deduced which allow for relative time measurements even in the zeptosecond range. C-REMI provides a “spyhole” into the secrets of ultrafast dynamics of atomic and molecular processes. It is applied today around the globe in numerous research projects in physics and chemistry. The purpose for writing this article is to demonstrate the universal application possibilities of C-REMI, and its high multi-coincidence efficiency and high momentum resolution. This paper will not give a review on all milestone experiments performed with C-REMI.