### Refine

#### Year of publication

#### Document Type

- Preprint (223)
- Article (128)
- Conference Proceeding (7)
- Report (2)
- Doctoral Thesis (1)
- Working Paper (1)

#### Has Fulltext

- yes (362)

#### Is part of the Bibliography

- no (362)

#### Keywords

- Kollisionen schwerer Ionen (47)
- heavy ion collisions (41)
- Quark-Gluon-Plasma (17)
- equation of state (14)
- QGP (13)
- quark-gluon plasma (12)
- Hadron (11)
- heavy-ion collisions (11)
- Quark Gluon Plasma (10)
- Zustandsgleichung (10)

We present a RQMD calculation of antiproton yields and their momentum distribution in Ne + NaF collisions at 2 GeV/u. The antiprotons can be produced below threshold due to multi-step excitations for which meson-baryon interactions play a considerable role. In this system the annihilation probability for an initially produced antiproton is predicted to be about 65%.

Relying on the existing estimates for the production cross sections of mini black holes in models with large extra dimensions, we review strategies for identifying those objects at collider experiments. We further consider a possible stable final state of such black holes and discuss their characteristic signatures. Keywords: Black holes

We examine experimental signatures of TeV-mass black hole formation in heavy ion collisions at the LHC. We find that the black hole production results in a complete disappearance of all very high p_T (> 500 GeV) back-to-back correlated di-jets of total mass M > M_f ~ 1 TeV. We show that the subsequent Hawking-decay produces multiple hard mono-jets and discuss their detection. We study the possibility of cold black hole remnant (BHR) formation of mass ~ M_f and the experimental distinguishability of scenarios with BHRs and those with complete black hole decay. Finally we point out that a Heckler-Kapusta-Hawking plasma may form from the emitted mono-jets. In this context we present new simulation data of Mach shocks and of the evolution of initial conditions until the freeze-out.

The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p+p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb+Pb collisions.

The time dependent Hartree-Fock approximation is used to study the dynamical formation of long-lived superheavy nuclear complexes. The effects of long-range Coulomb polarization are treated in terms of a classical quadrupole polarization model. Our calculations show the existence of "resonantlike" structures over a narrow range of bombarding energies near the Coulomb barrier. Calculations of 238U + 238U are presented and the consequences of these results for supercritical positron emission are discussed. NUCLEAR REACTIONS 238U + 238U collisions as a function of bombarding energy, in the time-dependent Hartree-Fock approximation. Superheavy molecules and strongly damped collisions.

The fluid dynamical model is used to study the reactions 20Ne+238U and 40Ar+40Ca at Elab=390 MeV/nucleon. The calculated double differential cross sections d²ð/dΩdE exhibit sidewards maxima in agreement with recent experimental data. The azimuthal dependence of the triple differential distributions, to be obtained from an event-by-event analysis of 4π; exclusive experiments, can yield deeper insight into the collision process: Jets of nuclear matter are predicted with a strongly impact-parameter-dependent thrust angle θjet(b). NUCLEAR REACTIONS Ar+Ca, Ne+U, Elab=393 MeV/nucleon, fluid dynamics with thermal breakup, double differential cross sections, azimuthal dependence of triple differential cross sections, event-by-event thrust analysis of 4π exclusive experiments.

Proton spectra have been calculated for the reaction 12C(85 MeV/nucleon) + 197Au using a three-dimensional hydrodynamical model with viscosity and thermal conductivity and final thermal breakup. The theoretical results are compared to recent data. It is shown that the predicted flow effects are not observable as a result of the impact parameter averaging inherent in the inclusive proton spectra. In contrast, angular distributions of medium mass nuclei (A>3) in nearly central collisions can provide signatures for flow effects.

Energy spectra for p, d, t, 3He, 4He, and 6He from the reaction 12C+197Au at 35 MeV/nucleon are presented. A common intermediate rapidity source is identified using a moving source fit to the spectra that yields cross sections which are compared to analogous data at other bombarding energies and to several different models. The excitation function of the composite to proton ratios is compared with quantum statistical, hydrodynamic, and thermal models.

Measurement of complex fragments and clues to the entropy production from 42-137-MeV/nucleon Ar + Au
(1983)

Intermediate-rapidity fragments with A=1-14 emitted from 42-137-MeV/nucleon Ar + Au have been measured. Evidence is presented that these fragments arise from a common moving source. Entropy values are extracted from the mass distributions by use of quantum statistical and Hauser-Feshbach theories. The extracted entropy values of S/A≈2-2.4 are much smaller than the values expected from measured deuteron-to-proton ratios, but are still considerably higher than theoretically predicted values.

We study the recent claim that the intranuclear cascade model exhibits collective sidewards flow. 4000 intranuclear cascade simulations of the reaction Nb(400 MeV/nucleon)+Nb are performed employing bound and unbound versions of the Cugnon cascade. We show that instability of the target and projectile nuclei in the unbound cascade produces substantial spurious sidewards flow angles, for spectators as well as for participants. Once the nuclear binding is included, the peak of the flow angle distributions for the participants alone is reduced from 35° to 17°. The theoretical ‘‘data’’ are subjected to the experimental multiplicity and efficiency cuts of the plastic ball 4π electronic spectrometer system. The flow angular distributions obtained from the bound cascade—with spectators and participants subjected to the plastic ball filter—are forward peaked, in contrast to the plastic ball data. We discuss the uncertainties encountered with the application of the experimental efficiency and multiplicity filter. The influence of the Pauli principle on the flow is also discussed. The lack of flow effects in the cascade model clearly reflects the absence of the nuclear compression energy that can cause substantially larger collective sidewards motion—there is too little intrinsic pressure built up in the cascade model.