Refine
Year of publication
Document Type
- Preprint (227)
- Article (158)
- Conference Proceeding (7)
- Report (2)
- Doctoral Thesis (1)
- Working Paper (1)
Has Fulltext
- yes (396)
Is part of the Bibliography
- no (396)
Keywords
- Kollisionen schwerer Ionen (47)
- heavy ion collisions (41)
- Quark-Gluon-Plasma (17)
- equation of state (14)
- QGP (13)
- quark-gluon plasma (12)
- Hadron (11)
- heavy-ion collisions (11)
- Quark Gluon Plasma (10)
- Zustandsgleichung (10)
We present a RQMD calculation of antiproton yields and their momentum distribution in Ne + NaF collisions at 2 GeV/u. The antiprotons can be produced below threshold due to multi-step excitations for which meson-baryon interactions play a considerable role. In this system the annihilation probability for an initially produced antiproton is predicted to be about 65%.
Relying on the existing estimates for the production cross sections of mini black holes in models with large extra dimensions, we review strategies for identifying those objects at collider experiments. We further consider a possible stable final state of such black holes and discuss their characteristic signatures. Keywords: Black holes
We discuss the present collective flow signals for the phase transition to the quark-gluon plasma (QGP) and the collective flow as a barometer for the equation of state (EoS). We emphasize the importance of the flow excitation function from 1 to 50A GeV: here the hydrodynamicmodel has predicted the collapse of the v1-flow at ~ 10A GeV and of the v2-flow at ~ 40A GeV. In the latter case, this has recently been observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy, we interpret this observation as potential evidence for a first order phase transition at high baryon density pB.
We evaluate the in-medium D and -meson masses in hot hadronic matter induced by interactions with the light hadron sector described in a chiral SU(3) model. The e ective Lagrangian approach is generalized to SU(4) to include charmed mesons. We find that the D-mass drops substantially at finite temperatures and densities, which open the channels of the decay of the charmonium states ( 2, c, J/ ) to D pairs in the thermal medium. The e ects of vacuum polarisations from the baryon sector on the medium modification of the D-meson mass relative to those obtained in the mean field approximation are investigated. The results of the present work are compared to calculations based on the QCD sum-rule approach, the quark-meson coupling model, chiral perturbation theory, as well as to studies of quarkonium dissociation using heavy quark potential from lattice QCD.
Abstract: The e ect of vacuum fluctuations on the in-medium hadronic properties is investigated using a chiral SU(3) model in the nonlinear realization. The e ect of the baryon Dirac sea is seen to modify hadronic properties and in contrast to a calculation in mean field approximation it is seen to give rise to a significant drop of the vector meson masses in hot and dense matter. This e ect is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation (RHA), where the baryon self energy is modified due to interactions with both the non-strange ( ) and the strange ( ) scalar fields.
String theory suggests the existence of a minimum length scale. An exciting quantum mechanical implication of this feature is a modification of the uncertainty principle. In contrast to the conventional approach, this generalised uncertainty principle does not allow to resolve space time distances below the Planck length. In models with extra dimensions, which are also motivated by string theory, the Planck scale can be lowered to values accessible by ultra high energetic cosmic rays (UHECRs) and by future colliders, i.e. M f approximately equal to 1 TeV. It is demonstrated that in this novel scenario, short distance physics below 1/M f is completely cloaked by the uncertainty principle. Therefore, Planckian effects could be the final physics discovery at future colliders and in UHECRs. As an application, we predict the modifications to the e+ e- to f+ f- cross-sections.
We calculate open charm and charmonium production in Au + Au reac- tions at ps = 200 GeV within the hadron-string dynamics (HSD) transport approach employing open charm cross sections from pN and N reactions that are fitted to results from PYTHIA and scaled in magnitude to the available experimental data. Charmonium dissociation with nucleons and formed mesons to open charm (D + ¯D pairs) is included dynamically. The comover dissociation cross sections are described by a simple phase-space model including a single free parameter, i.e. an interaction strength M2 0 , that is fitted to the J/ suppression data for Pb + Pb collisions at SPS energies. As a novel feature we implement the backward channels for char- monium reproduction by D ¯D channels employing detailed balance. From our dynamical calculations we find that the charmonium recreation is com- parable to the dissociation by comoving mesons. This leads to the final result that the total J/ suppression at ps = 200 GeV as a function of centrality is slightly less than the suppression seen at SPS energies by the NA50 Collaboration, where the comover dissociation is substantial and the backward channels play no role. Furthermore, even in case that all di- rectly produced J/ mesons dissociate immediately (or are not formed as a mesonic state), a sizeable amount of charmonia is found asymptotically due to the D + ! J/ + meson channels in central collisions of Au + Au at ps = 200 GeV which, however, is lower than the J/ yield expected from f pp collis ns.
The D-meson spectral density at finite temperature is obtained within a self-consistent coupled-channel approach. For the bare meson-baryon interaction, a separable potential is taken, whose parameters are fixed by the position and width of the Lambda_c (2593) resonance. The quasiparticle peak stays close to the free D-meson mass, indicating a small change in the effective mass for finite density and temperature. However, the considerable width of the spectral density implies physics beyond the quasiparticle approach. Our results indicate that the medium modifications for the D-mesons in nucleus-nucleus collisions at FAIR (GSI) will be dominantly on the width and not, as previously expected, on the mass.
Abstract: The medium modification of kaon and antikaon masses, compatible with low energy KN scattering data, are studied in a chiral SU(3) model. The mutual interactions with baryons in hot hadronic matter and the e ects from the baryonic Dirac sea on the K( ¯K ) masses are examined. The in-medium masses from the chiral SU(3) e ective model are compared to those from chiral perturbation theory. Furthermore, the influence of these in-medium e ects on kaon rapidity distributions and transverse energy spectra as well as the K, ¯K flow pattern in heavy-ion collision experiments at 1.5 to 2 A·GeV are investigated within the HSD transport approach. Detailed predictions on the transverse momentum and rapidity dependence of directed flow v1 and the elliptic flow v2 are provided for Ni+Ni at 1.93 A·GeV within the various models, that can be used to determine the in-medium K± properties from the experimental side in the near future.