• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Eckhardt, Ines (5)
  • Fulda, Simone (4)
  • Rösler, Stefanie (2)
  • Jennewein, Carla (1)
  • Rajalingam, Krishnaraj (1)
  • Tchoghandjian, Aurélie (1)
  • Weigert, Andreas (1)
  • Wolf, Sebastian (1)

Year of publication

  • 2013 (2)
  • 2014 (2)
  • 2016 (1)

Document Type

  • Article (4)
  • Doctoral Thesis (1)

Language

  • English (5)

Has Fulltext

  • yes (5)

Is part of the Bibliography

  • no (5)

Keywords

  • Smac (3)
  • IAP proteins (2)
  • glioblastoma (2)
  • Apoptosis (1)
  • DR5 (1)
  • NF-κB (1)
  • TRAIL (1)
  • apoptosis (1)
  • cell death (1)
  • interferon (1)
+ more

Institute

  • Medizin (4)
  • Biochemie und Chemie (1)

5 search hits

  • 1 to 5
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Cooperative TRAIL production mediates IFNα/Smac mimetic-induced cell death in TNFα-resistant solid cancer cells (2016)
Rösler, Stefanie ; Eckhardt, Ines ; Wolf, Sebastian ; Fulda, Simone
Smac mimetics antagonize IAP proteins, which are highly expressed in several cancers. Recent reports indicate that Smac mimetics trigger a broad cytokine response and synergize with immune modulators to induce cell death. Here, we identify a differential requirement of TRAIL or TNFα as mediators of IFNα/Smac mimetic-induced cell death depending on the cellular context. Subtoxic concentrations of Smac mimetics cooperate with IFNα to induce cell death in various solid tumor cell lines in a highly synergistic manner as determined by combination index. Mechanistic studies show that IFNα/BV6 cotreatment promotes the formation of a caspase-8-activating complex together with the adaptor protein FADD and RIP1. Assembly of this RIP1/FADD/caspase-8 complex represents a critical event, since RIP1 silencing inhibits IFNα/BV6-induced cell death. Strikingly, pharmacological inhibition of paracrine/autocrine TNFα signaling by the TNFα scavenger Enbrel rescues HT-29 colon carcinoma cells, but not A172 glioblastoma cells from IFNα/BV6-induced cell death. By comparison, A172 cells are significantly protected against IFNα/BV6 treatment by blockage of TRAIL signaling through genetic silencing of TRAIL or its cognate receptor TRAIL receptor 2 (DR5). Despite this differential requirement of TNFα and TRAIL signaling, mRNA and protein expression is increased by IFNα/BV6 cotreatment in both cell lines. Interestingly, A172 cells turn out to be resistant to exogenously added recombinant TNFα even in the presence of BV6, whereas they display a high sensitivity towards TRAIL/BV6. In contrast, BV6 efficiently sensitizes HT-29 cells to TNFα while TRAIL only had limited efficacy. This demonstrates that a differential sensitivity towards TRAIL or TNFα determines the dependency on either death receptor ligand for IFNα/Smac mimetic-induced cell death. Thus, by concomitant stimulation of both death receptor systems IFNα/Smac mimetic combination treatment is an effective strategy to induce cell death in TNFα- or TRAIL-responsive cancers.
Identification of IRF1 as critical dual regulator of Smac mimetic-induced apoptosis and inflammatory cytokine response (2014)
Eckhardt, Ines ; Weigert, Andreas ; Fulda, Simone
Smac (second mitochondria-derived activator of caspase) mimetics are considered as promising anticancer therapeutics and used to induce apoptosis by antagonizing inhibitor of apoptosis proteins, which are often abundantly expressed in cancer cells. Here, we identify interferon regulatory factor 1 (IRF1) as a novel critical regulator of Smac mimetic BV6-induced apoptosis and proinflammatory cytokine secretion with impact on the immune response. IRF1 knockdown rescues cells from BV6-induced apoptosis and attenuates BV6-stimulated upregulation of tumor necrosis factor-α (TNFα), indicating that IRF1 mediates BV6-triggered cell death, at least in part, by inducing TNFα. This notion is supported by data showing that exogenous supply of TNFα restores BV6-induced cell death in IRF-knockdown cells. Interestingly, IRF1 selectively controls the induction of nuclear factor-κB (NF-κB) target genes, as IRF1 depletion attenuates BV6-stimulated upregulation of TNFα and interleukin-8 (IL-8) but not p100 and RelB. Concomitant knockdown of IRF1 and p65 cooperate to inhibit BV6-induced cell death, implying a cooperative interaction of IRF1 and NF-κB. In addition, IRF1 silencing hampers TNFα induction by TNFα itself as an another prototypical NF-κB stimulus. Importantly, IRF1 depletion impedes BV6-stimulated secretion of additional proinflammatory cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-8, IL-6 and monocyte chemoattractant protein-1, and migration of primary monocytes to BV6-treated tumor cells. In conclusion, this identification of IRF1 as a dual regulator of BV6-induced apoptosis and inflammatory cytokine secretion provides novel insights into determinants of sensitivity towards Smac mimetic and possible implications of Smac mimetic treatment on tumor microenvironment and immune response.
Identification of non-canonical NF-κB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells (2013)
Tchoghandjian, Aurélie ; Jennewein, Carla ; Eckhardt, Ines ; Rajalingam, Krishnaraj ; Fulda, Simone
As inhibitor of apoptosis (IAP) proteins can regulate additional signaling pathways beyond apoptosis, we investigated the effect of the second mitochondrial activator of caspases (Smac) mimetic BV6, which antagonizes IAP proteins, on non-apoptotic functions in glioblastoma (GBM). Here, we identify non-canonical nuclear factor-κB (NF-κB) signaling and a tumor necrosis factor-α (TNFα)/TNF receptor 1 (TNFR1) autocrine/paracrine loop as critical mediators of BV6-stimulated migration and invasion of GBM cells. In addition to GBM cell lines, BV6 triggers cell elongation, migration and invasion in primary, patient-derived GBM cells at non-toxic concentrations, which do not affect cell viability or proliferation, and also increases infiltrative tumor growth in vivo underscoring the relevance of these findings. Molecular studies reveal that BV6 causes rapid degradation of cellular IAP proteins, accumulation of NIK, processing of p100 to p52, translocation of p52 into the nucleus, increased NF-κB DNA binding and enhanced NF-κB transcriptional activity. Electrophoretic mobility shift assay supershift shows that the NF-κB DNA-binding subunits consist of p50, p52 and RelB further confirming the activation of the non-canonical NF-κB pathway. BV6-stimulated NF-κB activation leads to elevated mRNA levels of TNFα and additional NF-κB target genes involved in migration (i.e., interleukin 8, monocyte chemoattractant protein 1, CXC chemokine receptor 4) and invasion (i.e., matrix metalloproteinase-9). Importantly, inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor prevents the BV6-stimulated cell elongation, migration and invasion. Similarly, specific inhibition of non-canonical NF-κB signaling by RNA interference-mediated silencing of NIK suppresses the BV6-induced cell elongation, migration and invasion as well as upregulation of NF-κB target genes. Intriguingly, pharmacological or genetic inhibition of the BV6-stimulated TNFα autocrine/paracrine loop by the TNFα-blocking antibody Enbrel or by knockdown of TNFR1 abrogates BV6-induced cell elongation, migration and invasion. By demonstrating that the Smac mimetic BV6 at non-toxic concentrations promotes migration and invasion of GBM cells via non-canonical NF-κB signaling, our findings have important implications for the use of Smac mimetics as cancer therapeutics.
Identification of DR5 as a critical, NF-κB-regulated mediator of Smac-induced apoptosis (2013)
Eckhardt, Ines ; Rösler, Stefanie ; Fulda, Simone
Smac mimetic promotes apoptosis by neutralizing inhibitor of apoptosis (IAP) proteins and is considered as a promising cancer therapeutic. Although an autocrine/paracrine tumor necrosis factor-α (TNFα) loop has been implicated in Smac mimetic-induced cell death, little is yet known about additional factors that determine sensitivity to Smac mimetic. Using genome-wide gene expression analysis, we identify death receptor 5 (DR5) as a novel key mediator of Smac mimetic-induced apoptosis. Although several cell lines that are sensitive to the Smac mimetic BV6 die in a TNFα-dependent manner, A172 glioblastoma cells undergo BV6-induced apoptosis largely independently of TNFα/TNFR1, as the TNFα-blocking antibody Enbrel or TNFR1 knockdown provide little protection. Yet, BV6-stimulated nuclear factor-κB (NF-κB) activation is critically required for apoptosis, as inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor (IκBα-SR) blocks BV6-induced apoptosis. Unbiased genome-wide gene expression studies in IκBα-SR-overexpressing cells versus vector control cells reveal that BV6 increases DR5 expression in a NF-κB-dependent manner. Importantly, this BV6-stimulated upregulation of DR5 is critically required for apoptosis, as transient or stable knockdown of DR5 significantly inhibits BV6-triggered apoptosis. In addition, DR5 silencing attenuates formation of a RIP1/FADD/caspase-8 cytosolic cell death complex and activation of caspase-8, -3 and -9. By identifying DR5 as a critical mediator of Smac mimetic-induced apoptosis, our findings provide novel insights into the determinants that control susceptibility of cancer cells to Smac mimetic.
Regulation of SMAC mimetic-induced cell death by the NF-κB signaling network (2014)
Eckhardt, Ines
Since Inhibitor of Apoptosis (IAP) proteins are frequently dysregulated in different cancer entities and contribute to apoptosis resistance, pharmacological IAP antagonists are considered to be promising agents for the future development of cancer treatment strategies. IAP antagonists are small-molecule drugs that have been designed to mimic the interaction site of IAP proteins with their endogenous inhibitor Second mitochondrial activator of caspases (SMAC). Thus, they are frequently referred to as SMAC mimetics. Treatment with SMAC mimetics engages an apoptotic program in cancers by affecting different components of the apoptotic machinery. Besides disinhibition of caspases, SMAC mimetics trigger non-canonical nuclear factor-κB (NF-κB) signaling, which induces upregulation of tumor necrosis factor (TNF) α and other NF-κB target genes. In particular, TNFα production has been closely linked to the induction of SMAC mimetic-mediated cell death. The TNFα-dependent para/autocrine loop facilitates the formation of a cytosolic complex consisting of caspase-8, Fas-associated death domain (FADD) and Receptor-interacting protein (RIP) 1, which serves as caspase-8 activation platform and ultimately triggers induction of apoptosis. In the present study, we use the small-molecule bivalent SMAC mimetic BV6 to analyze SMAC-stimulated NF-κB signaling in cancer cell lines of different entities. Interestingly, we identify two novel NF-κB-regulated factors that are both required for SMAC mimetic-induced apoptosis in a context-dependent manner. First, we show that NF-κB-dependent upregulation of death receptor 5 (DR5) can serve as an alternative mechanism of BV6-mediated cell death. We demonstrate that BV6 treatment induces NF-κB-dependent but largely TNFα -independent apoptosis in A172 glioblastoma cells. By using an unbiased whole genome expression analysis approach, we identify DR5 as a critical NF-κB target gene, which substitutes TNFα and is indispensable for BV6-initated cell death in A172 cells. Second, we demonstrate that Interferon regulatory factor (IRF) 1 is required for BV6-induced TNFα production and apoptosis. Our study provides evidence that IRF1 closely cooperates with the NF-κB network in BV6-mediated cell death and additionally alters expression of selective SMAC mimetic-induced target genes. Furthermore, we show that BV6 treatment triggers secretion of a set of proinflammatory cytokines and increases attraction of monocytes to BV6-treated tumor cells in an IRF1-dependent manner. In summary, our work supports the notion that NF-κB-regulated factors are critically required for SMAC mimetic-initiated apoptosis. We show that IRF1 is indispensable for TNFα production and cell death in BV6-sensitive cell lines and that also DR5 can serve as a proapoptotic NF-κB-controlled factor in BV6-induced apoptosis besides TNFα. Furthermore, this study contributes to an improved understanding on non-apoptotic functions of SMAC mimetics, as IRF1 additionally influences expression levels of proinflammatory cytokines and attraction of immune cells. Thus, our work provides novel insights into the regulation of SMAC mimetic-induced signaling events, which is crucial for the translation of SMAC mimetics for use in clinical application.
  • 1 to 5

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks