Refine
Document Type
- Article (4)
- Conference Proceeding (4)
- Doctoral Thesis (1)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Boltzmann equation (1)
- Hydrodynamic (1)
- Kinetic Theory (1)
- Mach cones (1)
- Shock Waves (1)
Institute
In this work the main emphasis is put on the investigation of relativistic shock waves and Mach cones in hot and dense matter using the microscopic transport model BAMPS, based on the relativistic Boltzmann equation. Using this kinetic approach we study the complete transition from ideal-fluid behavior to free streaming. This includes shock-wave formation in a simplified (1+1)-dimensional setup as well as the investigation of Mach-cone formation induced by supersonic projectiles and/or jets in (2+1)- and (3+1)-dimensional static and expanding systems. We further address the question whether jet-medium interactions inducing Mach cones can contribute to a double-peak structure observed in two-particle correlations in heavy-ion collision experiments. Furthermore, BAMPS is used as a benchmark to compare kinetic theory to several relativistic hydrodynamic theories in order to verify their accuracy and to find their limitations.
We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC energies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.
Fast thermalization and a strong build up of elliptic flow of QCD matter were investigated within the pQCD based 3+1 dimensional parton transport model BAMPS including bremsstrahlung 2 <-> 3 processes. Within the same framework quenching of gluonic jets in Au+Au collisions at RHIC can be understood. The development of conical structure by gluonic jets is investigated in a static box for the regimes of small and large dissipation. Furthermore we demonstrate two different approaches to extract the shear viscosity coefficient n from a microscopical picture.
Second-order dissipative hydrodynamic equations for each component of a multi-component system are derived using the entropy principle. Comparison of the solutions with kinetic transport results demonstrates validity of the obtained equations. We demonstrate how the shear viscosity of the total system can be calculated in terms of the involved cross-sections and partial densities. The presence of the inter-species interactions leads to a characteristic time dependence of the shear viscosity of the mixture, which also means that the shear viscosity of a mixture cannot be calculated using the Green-Kubo formalism the way it has been done recently. This finding is of interest for understanding of the shear viscosity of a quark-gluon plasma extracted from comparisons of hydrodynamic simulations with experimental results from RHIC and LHC.
Using a partonic transport model we investigate the evolution of conical structures in ultrarelativistic matter. Using two different source terms and varying the transport properties of the matter we study the formation of Mach Cones. Furthermore, in an additional study we extract the two-particle correlations from the numerical calculations and compare them to an analytical approximation. The influence of the viscosity to the shape of Mach Cones and the corresponding two-particle correlations is studied by adjusting the cross section of the medium.
We discuss recent applications of the partonic perturbative QCD based cascade model BAMPS with focus on heavy-ion phenomenology in the hard and soft momentum range. First, the elliptic flow and suppression of charm and bottom quarks are studied at LHC energies. Thereafter, we compare in a detailed study the standard Gunion-Bertsch approximation of the matrix elements for inelastic processes to the exact results in leading order perturbative QCD. Since a disagreement is found, we propose an improved Gunion-Bertsch matrix element, which agrees with the exact result in all phase space regions.
To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio n/s. Furthermore we compare our results with those obtained by solving the relativistic causal dissipative fluid equations of Israel and Stewart (IS), in order to show the validity of the IS hydrodynamics. Employing the parton cascade we also investigate the formation of Mach shocks induced by a high-energy gluon traversing viscous gluon matter. For n/s = 0.08 a Mach cone structure is observed, whereas the signal smears out for n/s >=0.32.
Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.