Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- G-quadruplexes (2)
- NMR spectroscopy (1)
- RNA (1)
- TERRA RNA (1)
- biophysical investigation (1)
- circular dichroism (1)
- folding landscapes (1)
- kinetics (1)
- real-time NMR spectroscopy (1)
Institute
This thesis deals with the NMR characterization of the structure and the folding dynamics of DNA G quadruplexes as potential therapeutic target in cancer therapy and building block for DNA based nanotechnology.
The first part of this thesis (Chapters 1-5) introduces the reader to the world of G quadruplexes.
The main features of the classic Watson Crick double helix and alternative non B DNA structures are illustrated in Chapter 1. Many different base pairing schemes are possible, besides the canonical Watson Crick motif, thereby expanding the structural complexity of DNA. Non canonical base pairing, such as Hoogsteen hydrogen bonding, enables the assembly of triplets and quartets, which are the building blocks of triplex and quadruplex structures, respectively.
The structural characteristics of DNA G quadruplexes are delineated in detail in Chapter 2.
G quadruplex structures are extremely polymorphic, in terms of strands orientation, loops geometry, grooves width and arrangement of the glycosidic torsion angles. The various structural elements as well as the different cation coordination geometries are here presented, with a special emphasis on the diversity of conformations reported for the telomeric DNA G quadruplexes.
Chapter 3 describes the biological roles of G quadruplex structures in the genome. After introducing the architecture of the telomeric DNA and its interacting proteins, the mechanism of the telomeres elongation catalysed by the telomerase enzyme and its implications for cancer are discussed. The occurrence of G quadruplex structures in functional regions of the genome, such as promoter regions of oncogenes, and their possible roles in regulating the gene transcription are then outlined in the second part of the chapter.
The potential of G quadruplex as a novel anti cancer target is examined in Chapter 4 and the proposed anti cancer mechanisms for a ligand stabilizing G quadruplex structures are discussed.
RNA G quadruplexes and their putative role in gene regulation at the level of translation are briefly illustrated at the end of the chapter.
A general overview on the NMR methods to investigate the G quadruplex structures is presented in Chapter 5. The experimental set up used for the real time NMR studies of the G quadruplex folding is also described.
The second part of the thesis (Chapters 6-8), which is the cumulative part, comprises the original publications grouped in three Chapters according to the topic.
The state of the art on small molecules targeting G quadruplex structures is given at the beginning of Chapter 6, including a summary of the experimental structures of G quadruplexes in complex with ligands available up to date. The publications presented in Chapters 6.1-6.3 are concerned with the elucidation of the interaction modes between DNA G quadruplexes and selected ligands with potential therapeutic applications.
The binding ability of two natural alkaloids (berberine and sanguinarine) to telomeric G quadruplexes is examined in Chapter 6.1. The ability of carbazole and diguanosine derivatives (synthetized in the group of Prof. Dash, IISER, Kolkata) to interact with c-MYC G quadruplex and down regulate c-MYC expression is explored in Chapter 6.2 and Chapter 6.3, respectively.
The energy landscape of human telomeric G quadruplex structures is discussed in Chapter 7, in light of the experimental kinetic studies as well as molecular dynamics simulations reported in literature until now. Up to date there is no general consensus regarding the folding pathway of unimolecular human telomeric G quadruplex, in particular due to the lack of atomic resolution data on the species involved in the folding. Chapter 7.1 presents the first real time NMR study of the human telomeric G quadruplex folding kinetics.
The final chapter of this thesis (Chapter 8) outlines the potential of G-quadruplex structures as building blocks in nanotechnology. After illustrating briefly the additional possibilities offered by alternative non B DNA structures to programme nanomaterials, a number of applications employing G quadruplex structures in different fields of nanotechnology are described. The article presented in Chapter 8.1 investigates the structural and photoswitching properties of a novel intermolecular azobenzene containing G quadruplex synthetized in the group of Prof. Heckel (Goethe University, Frankfurt).
The c-MYC proto-oncogene is a regulator of fundamental cellular processes such as cell cycle progression and apoptosis. The development of novel c-MYC inhibitors that can act by targeting the c-MYC DNA G-quadruplex at the level of transcription would provide potential insight into structure-based design of small molecules and lead to a promising arena for cancer therapy. Herein we report our finding that two simple bis-triazolylcarbazole derivatives can inhibit c-MYC transcription, possibly by stabilizing the c-MYC G-quadruplex. These compounds are prepared using a facile and modular approach based on Cu(I) catalysed azide and alkyne cycloaddition. A carbazole ligand with carboxamide side chains is found to be microenvironment-sensitive and highly selective for "turn-on" detection of c-MYC quadruplex over duplex DNA. This fluorescent probe is applicable to visualize the cellular nucleus in living cells. Interestingly, the ligand binds to c-MYC in an asymmetric fashion and selects the minor-populated conformer via conformational selection.
We present the rapid biophysical characterization of six previously reported putative G‐quadruplex‐forming RNAs from the 5′‐untranslated region (5′‐UTR) of silvestrol‐sensitive transcripts for investigation of their secondary structures. By NMR and CD spectroscopic analysis, we found that only a single sequence—[AGG]2[CGG]2C—folds into a single well‐defined G‐quadruplex structure. Sequences with longer poly‐G strands form unspecific aggregates, whereas CGG‐repeat‐containing sequences exhibit a temperature‐dependent equilibrium between a hairpin and a G‐quadruplex structure. The applied experimental strategy is fast and provides robust readout for G‐quadruplex‐forming capacities of RNA oligomers.
We investigated the folding kinetics of G-quadruplex (G4) structures by comparing the K+-induced folding of an RNA G4 derived from the human telomeric repeat-containing RNA (TERRA25) with a sequence homologous DNA G4 (wtTel25) using CD spectroscopy and real-time NMR spectroscopy. While DNA G4 folding is biphasic, reveals kinetic partitioning and involves kinetically favoured off-pathway intermediates, RNA G4 folding is faster and monophasic. The differences in kinetics are correlated to the differences in the folded conformations of RNA vs. DNA G4s, in particular with regard to the conformation around the glycosidic torsion angle χ that uniformly adopts anti conformations for RNA G4s and both, syn and anti conformation for DNA G4s. Modified DNA G4s with 19F bound to C2′ in arabino configuration adopt exclusively anti conformations for χ. These fluoro-modified DNA (antiTel25) reveal faster folding kinetics and monomorphic conformations similar to RNA G4s, suggesting the correlation between folding kinetics and pathways with differences in χ angle preferences in DNA and RNA, respectively.