Refine
Year of publication
Has Fulltext
- yes (77)
Is part of the Bibliography
- no (77)
Keywords
- autophagy (9)
- glioblastoma (5)
- ubiquitin (4)
- Autophagy (3)
- apoptosis (3)
- cell biology (3)
- phosphorylation (3)
- ubiquitination (3)
- ATG8 (2)
- BAG3 (2)
Institute
- Medizin (66)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (21)
- Exzellenzcluster Makromolekulare Komplexe (15)
- Biochemie und Chemie (13)
- Biochemie, Chemie und Pharmazie (5)
- Biowissenschaften (4)
- MPI für Biophysik (4)
- Physik (3)
- Informatik (2)
- Biodiversität und Klima Forschungszentrum (BiK-F) (1)
Autophagy is a cytosolic quality control process that recognizes substrates through receptor‐mediated mechanisms. Procollagens, the most abundant gene products in Metazoa, are synthesized in the endoplasmic reticulum (ER), and a fraction that fails to attain the native structure is cleared by autophagy. However, how autophagy selectively recognizes misfolded procollagens in the ER lumen is still unknown. We performed siRNA interference, CRISPR‐Cas9 or knockout‐mediated gene deletion of candidate autophagy and ER proteins in collagen producing cells. We found that the ER‐resident lectin chaperone Calnexin (CANX) and the ER‐phagy receptor FAM134B are required for autophagy‐mediated quality control of endogenous procollagens. Mechanistically, CANX acts as co‐receptor that recognizes ER luminal misfolded procollagens and interacts with the ER‐phagy receptor FAM134B. In turn, FAM134B binds the autophagosome membrane‐associated protein LC3 and delivers a portion of ER containing both CANX and procollagen to the lysosome for degradation. Thus, a crosstalk between the ER quality control machinery and the autophagy pathway selectively disposes of proteasome‐resistant misfolded clients from the ER.
Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection
(2021)
SidE family of Legionella effectors catalyze non-canonical phosphoribosyl-linked ubiquitination (PR-ubiquitination) of host proteins during bacterial infection. SdeA localizes predominantly to ER and partially to the Golgi apparatus, and mediates serine ubiquitination of multiple ER and Golgi proteins. Here we show that SdeA causes disruption of Golgi integrity due to its ubiquitin ligase activity. The Golgi linking proteins GRASP55 and GRASP65 are PR-ubiquitinated on multiple serine residues, thus preventing their ability to cluster and form oligomeric structures. In addition, we found that the functional consequence of Golgi disruption is not linked to the recruitment of Golgi membranes to the growing Legionella-containing vacuoles. Instead, it affects the host secretory pathway. Taken together, our study sheds light on the Golgi manipulation strategy by which Legionella hijacks the secretory pathway and promotes bacterial infection.
Ubiquitination now ranks with phosphorylation as one of the best-studied post-translational modifications of proteins with broad regulatory roles across all of biology. Ubiquitination usually involves the addition of ubiquitin chains to target protein molecules, and these may be of eight different types, seven of which involve the linkage of one of the seven internal lysine (K) residues in one ubiquitin molecule to the carboxy-terminal diglycine of the next. In the eighth, the so-called linear ubiquitin chains, the linkage is between the amino-terminal amino group of methionine on a ubiquitin that is conjugated with a target protein and the carboxy-terminal carboxy group of the incoming ubiquitin. Physiological roles are well established for K48-linked chains, which are essential for signaling proteasomal degradation of proteins, and for K63-linked chains, which play a part in recruitment of DNA repair enzymes, cell signaling and endocytosis. We focus here on linear ubiquitin chains, how they are assembled, and how three different avenues of research have indicated physiological roles for linear ubiquitination in innate and adaptive immunity and suppression of inflammation.
Autophagy is a membrane-trafficking process that directs degradation of cytoplasmic material in lysosomes. The process promotes cellular fidelity, and while the core machinery of autophagy is known, the mechanisms that promote and sustain autophagy are less well defined. Here we report that the epigenetic reader BRD4 and the methyltransferase G9a repress a TFEB/TFE3/MITF-independent transcriptional program that promotes autophagy and lysosome biogenesis. We show that BRD4 knockdown induces autophagy in vitro and in vivo in response to some, but not all, situations. In the case of starvation, a signaling cascade involving AMPK and histone deacetylase SIRT1 displaces chromatin-bound BRD4, instigating autophagy gene activation and cell survival. Importantly, this program is directed independently and also reciprocally to the growth-promoting properties of BRD4 and is potently repressed by BRD4-NUT, a driver of NUT midline carcinoma. These findings therefore identify a distinct and selective mechanism of autophagy regulation.
The ubiquitin-binding zinc finger (UBZ) is a type of zinc-coordinating β-β-α fold domain found mainly in proteins involved in DNA repair and transcriptional regulation. Here, we report the crystal structure of the UBZ domain of Y-family DNA polymerase (pol) η and the crystal structure of the complex between the UBZ domain of Werner helicase-interacting protein 1 (WRNIP1) and ubiquitin, crystallized using the GFP fusion technique. In contrast to the pol η UBZ, which has been proposed to bind ubiquitin via its C-terminal α-helix, ubiquitin binds to a novel surface of WRNIP1 UBZ composed of the first β-strand and the C-terminal α-helix. In addition, we report the structure of the tandem UBZ domains of Tax1-binding protein 1 (TAX1BP1) and show that the second UBZ of TAX1BP1 binds ubiquitin, presumably in a manner similar to that of WRNIP1 UBZ. We propose that UBZ domains can be divided into at least two different types in terms of the ubiquitin-binding surfaces: the pol η type and the WRNIP1 type.
Ubiquitin ligases and beyond
(2012)
First paragraph (this article has no abstract): In a review published in 2004 [1] and that still repays reading today, Cecile Pickart traced the evolution of research on ubiquitination from its origins in the proteasomal degradation of proteins through the revelation that it has a central role in cell cycle regulation and the recognition of regulatory roles for ubiquitin in intracellular membrane transport, cell signalling, transcription, translation, and DNA repair.
Autophagy can act either as a tumor suppressor or as a survival mechanism for established tumors. To understand how autophagy plays this dual role in cancer, in vivo models are required. By using a highly heterogeneous C. elegans germline tumor, we show that autophagy-related proteins are expressed in a specific subset of tumor cells, neurons. Inhibition of autophagy impairs neuronal differentiation and increases tumor cell number, resulting in a shorter life span of animals with tumors, while induction of autophagy extends their life span by impairing tumor proliferation. Fasting of animals with fully developed tumors leads to a doubling of their life span, which depends on modular changes in transcription including switches in transcription factor networks and mitochondrial metabolism. Hence, our results suggest that metabolic restructuring, cell-type specific regulation of autophagy and neuronal differentiation constitute central pathways preventing growth of heterogeneous tumors.