Refine
Document Type
- Article (3)
- Contribution to a Periodical (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- COVID-19 (1)
- Radiation Oncology (1)
- Radiotherapy (1)
- Real-time polymerase chain reaction (PCR) tests (1)
- SARS-CoV-2 testing (1)
- cerebrospinal fluid (1)
- contact lens solution (1)
- hepatitis C virus (1)
- infectivity (1)
- saliva (1)
Institute
- Medizin (2)
- Physik (1)
- Präsidium (1)
- Rechtswissenschaft (1)
We present first data on sub-threshold production of Ks0 mesons and Λ hyperons in Au+Au collisions at sNN=2.4 GeV. We observe an universal 〈Apart〉 scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their 〈Apart〉 scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of them can simultaneously describe these observables with reasonable χ2 values.
Environmental stability and infectivity of hepatitis C virus (HCV) in different human body fluids
(2018)
Background: Hepatitis C virus (HCV) is a hepatotropic, blood-borne virus, but in up to one-third of infections of the transmission route remained unidentified. Viral genome copies of HCV have been identified in several body fluids, however, non-parental transmission upon exposure to contaminated body fluids seems to be rare. Several body fluids, e.g., tears and saliva, are renowned for their antimicrobial and antiviral properties, nevertheless, HCV stability has never been systematically analyzed in those fluids.
Methods: We used state of the art infectious HCV cell culture techniques to investigate the stability of HCV in different body fluids to estimate the potential risk of transmission via patient body fluid material. In addition, we mimicked a potential contamination of HCV in tear fluid and analyzed which impact commercially available contact lens solutions might have in such a scenario.
Results: We could demonstrate that HCV remains infectious over several days in body fluids like tears, saliva, semen, and cerebrospinal fluid. Only hydrogen-peroxide contact lens solutions were able to efficiently inactivate HCV in a suspension test.
Conclusion: These results indicate that HCV, once it is present in various body fluids of infected patients, remains infective and could potentially contribute to transmission upon direct contact.
Purpose: To evaluate the impact of testing asymptomatic cancer patients, we analyzed all tests for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) before and during radiotherapy at a tertiary cancer center throughout the second wave of the pandemic in Germany. Methods: Results of all real-time polymerase chain reaction (RT-PCR) tests for SARS-CoV 2 performed at our radio-oncology department between 13 October 2020 and 11 March 2021 were included. Clinical data and anamnestic information at the time of testing were documented and examined for (i) the presence of COVID-19-related symptoms and (ii) virus-related anamnesis (high-risk [prior positive test or contact to a positive tested person within the last 14 days] or low-risk [inconspicuous anamnesis within the last 14 days]). Results: A total of 1056 SARS-CoV 2 tests in 543 patients were analyzed. Of those, 1015 tests were performed in asymptomatic patients and 41 tests in patients with COVID-19-associated symptoms. Two of 940 (0.2%) tests in asymptomatic patients with low-risk anamnesis and three of 75 (4.0%) tests in asymptomatic patients with high-risk anamnesis showed a positive result. For symptomatic patients, SARS-CoV 2 was detected in three of 36 (8.3%) low-risk and three of five (60.0%) high-risk tests. Conclusion: To the best of our knowledge, this is the first study evaluating the correlation between individual risk factors and positivity rates of SARS-CoV 2 tests in cancer patients. The data demonstrate that clinical and anamnestic assessment is a simple and effective measure to distinctly increase SARS-CoV 2 test efficiency. This might enable cancer centers to adjust test strategies in asymptomatic patients, especially when test resources are scarce.