### Refine

#### Year of publication

#### Document Type

- Article (10)

#### Language

- English (10)

#### Has Fulltext

- yes (10)

#### Is part of the Bibliography

- no (10)

#### Keywords

- 13C(16O (1)
- 17O) (1)
- asymmetric two-center shell model (1)
- calculated level diagrams (1)
- crane fly (1)
- heavy ion scattering (1)
- integrative taxonomy (1)
- larva (1)
- molecular theory of nucleon transfer (1)
- mt COI (1)

#### Institute

- Physik (9)

Two-center level diagrams for the neutron orbitals in the scattering of 16O on 25Mg and of 17O on 24Mg are calculated by using a deformed potential for 24,25Mg. Possible consequences of the nuclear Landau-Zener mechanism, namely the promotion of nucleons at avoided level crossings, and of the rotational coupling between crossing molecular single-particle orbitals are studied for inelastic excitation and neutron transfer. The important excitation and transfer processes, which are enhanced by the promotion process and the rotational coupling, are presented. NUCLEAR REACTIONS Heavy ion scattering, theory of nucleon transfer, molecular wave functions, asymmetric two center shell model, single particle excitation, deformed nuclei.

Quasimolecular resonance structures in the 12C-12C system are studied in the framework of the coupled channel formalism in the energy range Ec.m.=5-14 MeV. The influence of the coupling of the first excited 2+ state in 12C on the resonance structures is investigated by choosing various types of coupling potentials. The intermediate structures in the reflection and transition coefficients and cross sections can be interpreted with the double resonance mechanism. NUCLEAR REACTIONS 12C(12C, 12C), quasimolecular states, coupling potentials, coupled channel calculations for σ(θ).

The theory of nucleon transfer in heavy ion reactions is formulated on the basis of the molecular particlecore model for a system consisting of two cores and one extracore nucleon. The extracore nucleon is described by the molecular wave functions of the asymmetric two-center shell model. The cores, which are assumed to be collectively excitable, are treated with vibrator-rotator models. Potentials for shape polarization are contained in the asymmetric two-center shell model and the interaction between the cores. The excitation and transfer of the extracore nucleon is induced by the radial and rotational couplings. The coupled channel equations, which include the recoil effects in first approximation, are derived in a form suitable for numerical calculations of cross sections. NUCLEAR REACTIONS Heavy ion scattering, theory of nucleon transfer, molecular wave functions, two-center shell model, collective and single-particle excitation.

The molecular particle-core model is applied to the scattering of 13C on 13C. The model divides the 13C+ 13C system into two 12C cores and two valence neutrons. The valence neutrons are described with molecular eigenfunctions of the symmetric two-center shell model. Coupled channel calculations are carried out for the inelastic single and mutual excitation of the first (1/2+ state of 13C and the neutron transfer to the 12C+14C system. The results reproduce the experimental data. The analysis of the S matrix shows that the gross structure of the transfer excitation function is related to resonances in the relative motion of the elastic and transfer channels.

The inelastic excitation of the (1/2)+ (871 keV) state of 17O in the reaction of 13C on 17O is described by a time-dependent quantum mechanical model with two diabatic states and a classical treatment of the radial relative motion. The structures in the angle-integrated cross section are interpreted as caused by the barriers of the angular momentum-dependent potentials. The transition strength is enhanced by the Landau-Zener effect between the levels considered.

In heavy ion collisions, the molecular single-particle motion may cause specific structures in the energy dependence of the cross sections which arise by the promotion of nucleons at level crossings according to the Landau-Zener excitation mechanism. In order to examine this effect in asymmetric heavy ion collisions, we have calculated level diagrams of the two-center shell model for the target projectile combinations 13C + 16O and 12C + 17O and analyzed with respect to inelastic excitation and neutron transfer. We select certain reactions as possible candidates for showing enhanced cross sections for nucleon excitation and transfer due to real and avoided level crossings near the Fermi level.

Determination of the effective 12C + 12C potential from the sub-Coulomb single-particle resonances
(1974)

The sub-Coulomb resonances observed in the total reaction yield of the 12C + 12C system at 4.9, 5.6, and 6.2 MeV are explained as single-particle resonances. The "true" effective 12C + 12C potential is determined directly as the real potential which reproduces best the position and the spacing of the observed sub-Coulomb resonances. This potential is found from a parametrization of the two limiting adiabatic and sudden potentials.

A general formalism for the scattering of heavy ions, which is especially convenient to study the antisymmetrization effects, is developed. Antisymmetrization effects are investigated by expanding the completely antisymmetrized wave function according to the number of exchanged nucleons. The particle-core model for the scattering of nuclei with loosely bound nucleons is presented. A formula for the additional contribution to the effective potential due to antisymmetrization effects is obtained by calculating the expectation value of the Hamiltonian with intrinsic wave functions. Application of the formalism is illustrated for the 14N + 14N scattering problem and its usefulness is demonstrated.

The genus Elliptera Schiner, 1863 is represented by ten species worldwide, but immatures of only the European species E. omissa Schiner has been described so far. Molecular methods were used to associate larvae and adults for two East Asian species from South Korea. Elliptera jacoti Alexander and E. zipanguensis zipanguensis Alexander are common species in aquatic, hygropetric habitats in mountainous parts of the Korean peninsula. Elliptera mongolica Podeniene, Podenas & Gelhaus sp. nov. from Mongolia and China (Inner Mongolia) is described based on mitochondrial DNA COI gene barcode sequences and morphological characters of larvae. Larvae of all three species and pupae of E. jacoti are described and illustrated. Morphological characters of the larvae useful for discrimination of species are given. An identification key for East Asian larvae of the genus Elliptera is compiled.