Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Bioinformatik (1)
- In silico-Methode (1)
- Molekulare Bioinformatik (1)
- Post-Targeting Funktionen (1)
- Protein-Sortierung (1)
- Signalpeptide (1)
- Zellkultur (1)
- bacterial autotransporter (1)
- bioinformatic (1)
- lange Signalpeptide (1)
Institute
Targeting signals direct proteins to their extra- or intracellular destination such as the plasma membrane or cellular organelles. Here we investigated the structure and function of exceptionally long signal peptides encompassing at least 40 amino acid residues. We discovered a two-domain organization ("NtraC model") in many long signals from vertebrate precursor proteins. Accordingly, long signal peptides may contain an N-terminal domain (N-domain) and a C-terminal domain (C-domain) with different signal or targeting capabilities, separable by a presumably turn-rich transition area (tra). Individual domain functions were probed by cellular targeting experiments with fusion proteins containing parts of the long signal peptide of human membrane protein shrew-1 and secreted alkaline phosphatase as a reporter protein. As predicted, the N-domain of the fusion protein alone was shown to act as a mitochondrial targeting signal, whereas the C-domain alone functions as an export signal. Selective disruption of the transition area in the signal peptide impairs the export efficiency of the reporter protein. Altogether, the results of cellular targeting studies provide a proof-of-principle for our NtraC model and highlight the particular functional importance of the predicted transition area, which critically affects the rate of protein export. In conclusion, the NtraC approach enables the systematic detection and prediction of cryptic targeting signals present in one coherent sequence, and provides a structurally motivated basis for decoding the functional complexity of long protein targeting signals.
Ziel der Arbeit war die Analyse von langen eukaryotischen Signalpeptiden, mit einer Länge von mindestens 40 Aminosäuren, und ihre Diskriminierung zu kurzen SP. Signalpeptide sind notwendig, um die im Cytosol translatierten Proteine zum Ort ihrer Funktion zu dirigieren. Sie spielen dadurch eine fundamentale Rolle bei der Entwicklung von Zellen. Signalpeptide weisen keine Sequenzhomologie, aber einen typischen, in drei Regionen gegliederten Aufbau (n-, h-, c-Region) auf. In den letzten Jahren wurden zunehmend Beispiele von Signalpeptiden gefunden, die neben dem Targeting zum endoplasmatischen Retikulum weitere Post-Targeting-Funktionen aufweisen. Auffällig ist hier die besondere Länge der Signalpeptide. Für die Analyse dieser langen Signalpeptide standen bis jetzt keine gezielt entwickelten Vorhersageprogramme zur Verfügung. Im Rahmen dieser Arbeit wurde diese Gruppe langer Signalpeptide untersucht und ein Modell zu deren interner Organisation entwickelt. Das entwickelte „NtraC“-Modell erweitert etablierte sequenzbasierte Ansätze für kurze SP um eine Sekundärstruktur-motivierte Perspektive für lange Sinalpeptide. Zuerst wird dabei ein Übergangsbereich (transition area, N„tra“C), der potentiell β-Turn bildende Aminosäuren enthält, identifiziert. Dieser dient im Modell zur Zerlegung des SP in zwei hinsichtlich ihrer Funktion unabhängige Domänen: eine N-terminale N-Domäne (‚N’traC) und eine C-terminale C-Domäne (Ntra‚C’). Diese mit bekannten Vorhersageprogrammen nicht identifizierbaren „kryptischen“ Domänen innerhalb der Signalpeptid-Sequenz können unterschiedliche Targeting-Kapazitäten aufweisen und entsprechen für sich genommen eigenständigen Protein-Targeting-Signalen. Im Fall einer ER-Targeting Kapazität z.B. weist eine Domäne für sich genommen eine n-, h-, und c-Region auf. 63% aller Vertebrata-Signalpeptide entsprechen der in dieser Arbeit vorgeschlagenen NtraC-Organisation. Eine basierend auf dem NtraC-Modell vorgeschlagene Architektur für die langen Signalpeptide von shrew-1 (43 Aminosäuren), DCBD2 (66 Aminosäuren) und RGMA (47 Aminosäuren) wurde vom Autor selbst in vitro überprüft. Für alle drei Proteine wurden eine N-Domäne mit mitochondrialer Targeting-Funktion und eine C-Domäne mit Signalpeptid-Funktion vorhergesagt. Die langen Signalpeptide der Proteine wurden bisher als reine ER-Targeting-Signale betrachtet. Die vorliegende Studie zeigt jedoch, dass in diesen langen Signalpeptiden multiple Targetingsignale kodiert sind. Die ER-Targeting-Kapazität der C-Domänen wurde durch SEAP-Assays überprüft, die mTP-Funktion der N-Domäne durch biochemische Aufreinigung von Mitochondrien. Die in silico-Vorhersagen konnten in vollem Umfang für alle drei Proteine in vitro bestätigt werden. Eine Untersuchung der semantischen Wolke aller Proteine mit NtraC-organisiertem Signalpeptid zeigte, dass eine NtraC-Organisation in mehr als 50% der Fälle im Zusammenhang mit Typ-I Transmembranproteinen auftritt. Auch die Proteine der hier experimentell untersuchten Signalpeptide von shrew-1, DCBD2, RGMA sind Typ-I Transmembranproteine. Des Weiteren weisen 15% aller langen Vertebrata-Signalpeptide eine Domänen-Kombination analog zu shrew-1, DCBD2 und RGMA auf. Der gefundene analoge Aufbau der langen Signalpeptide könnte somit funktionelle Gruppen von Proteinen zusammenführen, die bisher anderweitig nicht gruppiert werden konnten. Es konnte weiterhin gezeigt werden, dass bakterielle Autotransporter Gram-negativer Bakterien in Variation ebenfalls eine NtraC-Organisation in ihren Signalpeptiden aufweisen. Gleiches konnte für Gruppen langer viraler Signalpeptide gezeigt werden. Das NtraC-Modell ist somit nicht auf Vertebrata-Signalpeptide beschränkt. In der vorliegenden Arbeit wurde ein Modell zur Domänen-Architektur langer Signalpeptide entwickelt und erfolgreich angewendet: das NtraC-Modell. Ein Vorhersage-Algorithmus zur in silico-Untersuchung langer Signalpeptide wurde implementiert und in einer webbasierten Benutzeroberfläche öffentlich zugänglich gemacht. Das Modell trifft auf 63% der annotierten langen Vertebrata-Signalpeptide zu. Des Weiteren wurden, basierend auf dem NtraC-Modell, für die langen Signalpeptide von drei Proteinen (shrew-1, DCBD2, RGMA) in vitro-Versuche durchgeführt. Die erhaltenen in vitro-Ergebnisse unterstützen klar die These, dass lange Signalpeptide eine aus definierten Domänen bestehende Organisation aufweisen können.
We performed a bioinformatical analysis of protein export elements (PEXEL) in the putative proteome of the malaria parasite Plasmodium falciparum. A protein family-specific conservation of physicochemical residue profiles was found for PEXEL-flanking sequence regions. We demonstrate that the family members can be clustered based on the flanking regions only and display characteristic hydrophobicity patterns. This raises the possibility that the flanking regions may contain additional information for a family-specific role of PEXEL. We further show that signal peptide cleavage results in a positional alignment of PEXEL from both proteins with, and without, a signal peptide.
Bacterial autotransporters represent a diverse family of proteins that autonomously translocate across the inner membrane of Gram-negative bacteria via the Sec complex and across the outer bacterial membrane. They often possess exceptionally long N-terminal signal sequences. We analyzed 90 long signal sequences of bacterial autotransporters and members of the two-partner secretion pathway in silico and describe common domain organization found in 79 of these sequences. The domains are in agreement with previously published experimental data. Our algorithmic approach allows for the systematic identification of functionally different domains in long signal sequences. Keywords: bacterial autotransporter, sequence analysis, pattern, protein targeting, signal peptide, protein trafficking
Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2Kb. Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2Kb stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization.