Refine
Document Type
- Article (8)
- Doctoral Thesis (1)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- ABC transporters (1)
- ATPases (1)
- Archery (1)
- Arrow (1)
- Bow (1)
- Kidney (1)
- Movement behaviour (1)
- X-ray crystallography (1)
- biogeographic legaciese (1)
- cryo-EM (1)
Institute
A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.
Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury
(2018)
Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Non-coding RNAs are crucially involved in its pathophysiology. We identified hypoxia-induced long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) to be upregulated in renal I/R injury. We here elucidated the functional role of Malat1 in vitro and its potential contribution to kidney injury in vivo. Malat1 was upregulated in kidney biopsies and plasma of patients with AKI, in murine hypoxic kidney tissue as well as in cultured and ex vivo sorted hypoxic endothelial cells and tubular epithelial cells. Malat1 was transcriptionally activated by hypoxia-inducible factor 1-α. In vitro, Malat1 inhibition reduced proliferation and the number of endothelial cells in the S-phase of the cell cycle. In vivo, Malat1 knockout and wildtype mice showed similar degrees of outer medullary tubular epithelial injury, proliferation, capillary rarefaction, inflammation and fibrosis, survival and kidney function. Small-RNA sequencing and whole genome expression analysis revealed only minor changes between ischemic Malat1 knockout and wildtype mice. Contrary to previous studies, which suggested a prominent role of Malat1 in the induction of disease, we did not confirm an in vivo role of Malat1 concerning renal I/R-injury.
Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation.
Introduction: It has been proposed that individual genetic variation contributes to the course of severe infections and sepsis. Recent studies of single nucleotide polymorphisms (SNPs) within the endotoxin receptor and its signaling system showed an association with the risk of disease development. This study aims to examine the response associated with genetic variations of TLR4, the receptor for bacterial LPS, and a central intracellular signal transducer (TIRAP/Mal) on cytokine release and for susceptibility and course of severe hospital acquired infections in distinct patient populations. Methods: Three intensive care units in tertiary care university hospitals in Greece and Germany participated. 375 and 415 postoperative patients and 159 patients with ventilator associated pneumonia (VAP) were included. TLR4 and TIRAP/Mal polymorphisms in 375 general surgical patients were associated with risk of infection, clinical course and outcome. In two prospective studies, 415 patients following cardiac surgery and 159 patients with newly diagnosed VAP predominantly caused by Gram-negative bacteria were studied for cytokine levels in-vivo and after ex-vivo monocyte stimulation and clinical course. Results: Patients simultaneously carrying polymorphisms in TIRAP/Mal and TLR4 and patients homozygous for the TIRAP/Mal SNP had a significantly higher risk of severe infections after surgery (odds ratio (OR) 5.5; confidence interval (CI): 1.34 - 22.64; P = 0.02 and OR: 7.3; CI: 1.89 - 28.50; P < 0.01 respectively). Additionally we found significantly lower circulating cytokine levels in double-mutant individuals with ventilator associated pneumonia and reduced cytokine production in an ex-vivo monocyte stimulation assay, but this difference was not apparent in TIRAP/Mal-homozygous patients. In cardiac surgery patients without infection, the cytokine release profiles were not changed when comparing different genotypes. Conclusions: Carriers of mutations in sequential components of the TLR signaling system may have an increased risk for severe infections. Patients with this genotype showed a decrease in cytokine release when infected which was not apparent in patients with sterile inflammation following cardiac surgery.
Background: Excessive unilateral joint loads may lead to overuse disorders. Bilateral training in archery is only performed as a supportive coordination training and as a variation of typical exercise. However, a series of studies demonstrated a crossover transfer of training-induced motor skills to the contralateral side, especially in case of mainly unilateral skills. We compared the cervical spine and shoulder kinematics of unilateral and bilateral training archers.
Methods: In this cross-sectional study, 25 (5 females, 48 ± 14 years) bilaterally training and 50 age-, sex- and level-matched (1:2; 47.3 ± 13.9 years) unilaterally training competitive archers were included. Cervical range of motion (RoM, all planes) and glenohumeral rotation were assessed with an ultrasound-based 3D motion analysis system. Upward rotation of the scapula during abduction and elevation of the arm were measured by means of a digital inclinometer and active shoulder mobility by means of an electronic caliper. All outcomes were compared between groups (unilaterally vs. bilaterally) and sides (pull-hand- vs. bow-hand-side).
Results: Unilateral and bilateral archers showed no between group and no side-to-side-differences in either of the movement direction of the cervical spine. The unilateral archers had higher pull-arm-side total glenohumeral rotation than the bilateral archers (mean, 95% CI), (148°, 144–152° vs. 140°, 135°-145°). In particular, internal rotation (61°, 58–65° vs. 56°, 51–61°) and more upward rotation of the scapula at 45 degrees (12°, 11–14° vs. 8°, 6–10°), 90 degrees (34°, 31–36° vs. 28°, 24–32°), 135 degrees (56°, 53–59° vs. 49°, 46–53°), and maximal (68°, 65–70° vs. 62°, 59–65°) arm abduction differed. The bow- and pull-arm of the unilateral, but not of the bilateral archers, differed in the active mobility of the shoulder (22 cm, 20–24 cm vs. 18 cm, 16–20 cm).
Conclusions: Unilaterally training archers display no unphysiologic movement behaviour of the cervical spine, but show distinct shoulder asymmetris in the bow- and pull-arm-side when compared to bilateral archers in glenohumeral rotation, scapula rotation during arm abduction, and active mobility of the shoulder. These asymmetries in may exceed physiological performance-enhancing degrees. Bilateral training may seems appropriate in archery to prevent asymmetries.
Members of the ATP‐binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP‐binding cassette in the nucleotide‐binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs:
In einer prospektiven Studie wurden 68 Patienten mit Ersatz des vorderen und/oder hinteren Kreuzbands 2, 12, 24 Wochen, 1, 1,5 und 2 Jahre postoperativ kontrastmittelunterstützt magnetresonanztomographisch und klinisch untersucht, insgesamt wurden 160 MR-Untersuchungen durchgeführt. Sagittale, parasagittale und koronale Bilder wurden nativ mittels T1- und T2 gewichteter Spin Echo (SE) und Turbospinecho- (TSE) Sequenzen und nach Kontrastmittelgabe mit T1- und FS-Sequezen akquiriert. Die Resultate wurden mit den klinischen Untersuchungsergebnissen verglichen. Die Kriterien der MR-Auswertung umfassten die Morphologie, Signalintensität, das Kontrastmittelaufnahmeverhalten des Transplantates und Sekundärzeichen und der Vergleich mit den klinischen Untersuchungen einschließlich Stabilitäts- und Funktionstests entsprechend der Scores nach IKDC, OAK und Lysholm. Zwei Wochen postoperativ zeigten alle Kreuzbandtransplantate ein homogenes niedriges Signal in den T1 und T2 gewichteten SE Sequenzen, eine Unterscheidung zu den Signalen normaler Kreuzbänder sowie der verbliebenen Patellarsehne war nicht möglich. Innerhalb des ersten postoperativen Jahres konnte bei allen Patienten eine kontinuierliche Zunahme der Signalintensität und damit Inhomogenität des Bandersatzes beobachtet werden. Die Werte stiegen von 1,1a.u. auf 6,9 a.u. nach einem Jahr. Eine Beurteilung des Kreuzbandersatzes war nicht möglich. Im darauffolgenden postoperativen zweiten Jahr kam es zu einer Normalisierung des Signalintensitätsverhalten des Transplantates und somit zu einer besseren Abgrenzbarkeit (C/N=3,0). Alle Patienten wiesen postoperative einen unkomplizierten Verlauf mit klinisch stabilem Transplantat auf.
Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process β-decay chains. These nuclei are attributed to the p and rp process.
For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections.
The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.