Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Complexity (1)
- Computational models (1)
- Computational science (1)
- Dynamical systems (1)
- Translation (1)
- acute infection (1)
- cancer (1)
- chronic infection (1)
- clinical presentation (1)
- codon usage preferences (1)
Institute
- Informatik (3)
Heterologously expressed genes require adaptation to the host organism to ensure adequate levels of protein synthesis, which is typically approached by replacing codons by the target organism’s preferred codons. In view of frequently encountered suboptimal outcomes we introduce the codon-specific elongation model (COSEM) as an alternative concept. COSEM simulates ribosome dynamics during mRNA translation and informs about protein synthesis rates per mRNA in an organism- and context-dependent way. Protein synthesis rates from COSEM are integrated with further relevant covariates such as translation accuracy into a protein expression score that we use for codon optimization. The scoring algorithm further enables fine-tuning of protein expression including deoptimization and is implemented in the software OCTOPOS. The protein expression score produces competitive predictions on proteomic data from prokaryotic, eukaryotic, and human expression systems. In addition, we optimized and tested heterologous expression of manA and ova genes in Salmonella enterica serovar Typhimurium. Superiority over standard methodology was demonstrated by a threefold increase in protein yield compared to wildtype and commercially optimized sequences.
Correction to: Scientifc Reports https://doi.org/10.1038/s41598-019-43857-5, published online 17 May 2019. In the original version of this Article, Jan-Hendrik Trösemeier was incorrectly affiliated with ‘Division of Allergology, Paul Ehrlich Institut, Langen, Germany’. Te correct afliations are listed below...
Viruses rely completely on the hosts' machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response.