Refine
Document Type
- Article (9)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Institute
Recently significant advances have been made in the collection, detection, and characterization of ice nucleating particles (INP). Ice nuclei are particles that facilitate the heterogeneous formation of ice within the atmospheric aerosol by lowering the free energy barrier to spontaneous nucleation and growth of ice from atmospheric water and/or vapor. The Frankfurt isostatic diiffusion chamber (FRIDGE) is an INP collection and offline detection system that has become widely deployed and shows additional potential for ambient measurements. Since its initial development FRIDGE has gone through several iterations and improvements. Here we describe improvements that have been made in the collection and analysis techniques. We detail the uncertainties inherent in the measurement method, and suggest a systematic method of error analysis for FRIDGE measurements. Thus what is presented herein should serve as a foundation for the dissemination of all current and future measurements using FRIDGE instrumentation.
Recently significant advances have been made in the collection, detection and characterization of ice nucleating particles (INPs). Ice nuclei are particles that facilitate the heterogeneous formation of ice within the atmospheric aerosol by lowering the free energy barrier to spontaneous nucleation and growth of ice from atmospheric water and/or vapor. The Frankfurt isostatic diffusion chamber (FRankfurt Ice nucleation Deposition freezinG Experiment: FRIDGE) is an INP collection and offline detection system that has become widely deployed and shows additional potential for ambient measurements. Since its initial development FRIDGE has gone through several iterations and improvements. Here we describe improvements that have been made in the collection and analysis techniques. We detail the uncertainties inherent in the measurement method and suggest a systematic method of error analysis for FRIDGE measurements. Thus what is presented herein should serve as a foundation for the dissemination of all current and future measurements using FRIDGE instrumentation.
Ice particle activation and evolution have important atmospheric implications for cloud formation, initiation of precipitation and radiative interactions. The initial formation of atmospheric ice by heterogeneous ice nucleation requires the presence of a nucleating seed, an ice-nucleating particle (INP), to facilitate its first emergence. Unfortunately, only a few long-term measurements of INPs exist, and as a result, knowledge about geographic and seasonal variations of INP concentrations is sparse. Here we present data from nearly 2 years of INP measurements from four stations in different regions of the world: the Amazon (Brazil), the Caribbean (Martinique), central Europe (Germany) and the Arctic (Svalbard). The sites feature diverse geographical climates and ecosystems that are associated with dissimilar transport patterns, aerosol characteristics and levels of anthropogenic impact (ranging from near pristine to mostly rural). Interestingly, observed INP concentrations, which represent measurements in the deposition and condensation freezing modes, do not differ greatly from site to site but usually fall well within the same order of magnitude. Moreover, short-term variability overwhelms all long-term trends and/or seasonality in the INP concentration at all locations. An analysis of the frequency distributions of INP concentrations suggests that INPs tend to be well mixed and reflective of large-scale air mass movements. No universal physical or chemical parameter could be identified to be a causal link driving INP climatology, highlighting the complex nature of the ice nucleation process. Amazonian INP concentrations were mostly unaffected by the biomass burning season, even though aerosol concentrations increase by a factor of 10 from the wet to dry season. Caribbean INPs were positively correlated to parameters related to transported mineral dust, which is known to increase during the Northern Hemisphere summer. A wind sector analysis revealed the absence of an anthropogenic impact on average INP concentrations at the site in central Europe. Likewise, no Arctic haze influence was observed on INPs at the Arctic site, where low concentrations were generally measured. We consider the collected data to be a unique resource for the community that illustrates some of the challenges and knowledge gaps of the field in general, while specifically highlighting the need for more long-term observations of INPs worldwide.
Ice nucleating particles over the eastern mediterranean measured by unmanned aircraft systems
(2017)
During an intensive field campaign on aerosol, clouds, and ice nucleation in the Eastern Mediterranean in April 2016, we measured the abundance of ice nucleating particles (INPs) in the lower troposphere from unmanned aircraft systems (UASs). Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UASs at altitudes up to 2.5 km. The number of INPs in these samples, which are active in the deposition and condensation modes at temperatures from −20 to −30 °C, were analyzed immediately after collection on site using the ice nucleus counter FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment). During the 1-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers' altitude. Here we present INP data from 42 individual flights, together with aerosol number concentrations, observations of lidar backscattering, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INPs with the particulate matter (PM), the lidar signal, and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INPs std L−1 were measured at −30 °C. The INP concentration in elevated plumes was on average a factor of 10 higher than at ground level. Since desert dust is transported for long distances over wide areas of the globe predominantly at several kilometers' altitude, we conclude that INP measurements at ground level may be of limited significance for the situation at the level of cloud formation.
Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems
(2016)
During an intensive field campaign on aerosol, clouds and ice nucleation in the Eastern Mediterranean in April 2016, we have measured the abundance of ice nucleating particles (INP) in the lower troposphere from unmanned aircraft systems (UAS). Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UAS at altitudes up to 2.5 km. The number of INP in these samples, which are active in the deposition and condensation modes at temperatures from −20 to −30 ◦C, were analyzed immediately after collection on site using the ice nucleus counter FRIDGE. During the one month campaign we encountered a series of Saharan dust plumes that traveled at several kilometers altitude. Here we present INP data from 42 individual flights, together with aerosol number concentrations, observations of lidar backscattering, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INP with the particulate mass (PM), the lidar signal and with the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INP std.l -1 were measured at −30 ◦C. The INP concentration in elevated plumes was on average a factor of 10 higher than at ground level. Since desert dust is transported for long distances over wide areas of the globe predominantly at several km altitude we conclude that INP measurements at ground level may be of limited significance for the situation at the level of cloud formation.
Eiskeime (INP) sind Aerosolpartikel, die das Entstehen von Eiskristallen in der Atmosphäre zwischen 0 und -37°C ermöglichen, indem sie die zur Ausbildung der Eisphase nötige Energie gegenüber einem reinen Wassersystem stark herabsetzen. Dabei sind aktive Stellen auf der Oberfläche dieser Partikel für die erste Nukleation von Eis verantwortlich. In der Folge können die Eiskristalle zulasten von verdunstenden Wasserdampfmolekülen und Wassertröpfchen weiter anwachsen. Über Eismultiplikationsprozesse zersplittern und vervielfältigen sich die Eiskristalle und wachsen über Bereifung schließlich zu einer kritischen Größe heran, wodurch sie als Niederschlag zu Boden fallen können. Auch wenn der Anteil der zur heterogenen Eisnukleation fähigen Aerosole vergleichsweise gering ist, spielen INP eine entscheidende Rolle für die Entwicklung von Niederschlag und nehmen Einfluss auf Strahlungsprozesse, indem sie auf die Phase der Wolken und damit auf deren Strahlungseigenschaften einwirken. Viele Fragen im Forschungsgebiet der heterogenen Eisnukleation sind jedoch weiterhin nicht hinreichend genau geklärt. Ohne eine verbesserte Kenntnis von Konzentrationen, geographischer und vertikaler Verteilung, sowie zeitlicher Variation, Quellen und Natur von INP, sind noch vorhandene Wissenslücken im Strahlungsantrieb durch Wechselwirkungen von Aerosolen und Wolken nur zu einem gewissem Grad zu reduzieren. Dies ist nötig, um aktuelle Beobachtungsdaten der sich erwärmenden Atmosphäre besser verstehen und die zukünftigen Änderungen des Klimas sicherer vorhersagen zu können. In dieser Arbeit wird die Vakuumdiffusionskammer FRIDGE verwendet, um atmosphärische INP-Konzentrationen zu bestimmen. Aerosolpartikel werden dabei in einem ersten Schritt auf einem Silicium-Probenträger elektrostatisch niedergeschlagen. Die Effizienz des Sammelprozesses, also der Anteil der Partikel die tatsächlich auf dem Si-Substrat abgeschieden werden, wurde mittels zweier unabhängiger Methoden auf etwa 60% bestimmt. In einem zweiten Mess-Schritt werden die Proben in FRIDGE typischen Bedingungen von Mischphasenwolken ausgesetzt, wodurch Eiskristalle an den INP aktiviert werden und im Verlauf einer Messung anwachsen. Eine Kamera beobachtet die durch das Eiswachstum entstehenden Helligkeitsänderungen auf dem dunklen Probensubstrat. Die Kriterien, wann ein Objekt als Eiskristall identifiziert und gezählt wird, mussten im Rahmen dieser Arbeit neu entwickelt werden. In der zu Beginn der Arbeit vorgefundenen Einstellung hatte bereits eine sehr geringe Helligkeitsänderung, wie sie durch das hygroskopische Wachstum von Aerosolpartikeln hervorgerufen wird, zu Signalen geführt, die fälschlicherweise als Eiskristalle gezählt wurden. Das reevaluierte Messverfahren von FRIDGE wurde im Zuge der FIN-02 Kampagne in einem groß angelegten Laborexperiment an der AIDA Wolkenkammer mit zahlreichen anderen INP-Zählern aus der ganzen Welt verglichen. Für den Großteil der Messungen der untersuchten Modell-Aerosoltypen konnte eine zufriedenstellende Übereinstimmung mit den anderen Instrumenten erzielt werden. In einer einmonatigen Feldmesskampagne im östlichen Mittelmeerraum konnten die ersten INP-Messungen an Bord eines unbemannten Flugzeugs durchgeführt werden. Während der Kampagne auf Zypern wurden mehrere Fälle von transportiertem Saharastaub beprobt, in denen die INP-Konzentration maßgeblich erhöht war. Lidar-Beobachtungen und ein Staubtransportmodell zeigten, dass sich das Maximum der Staubschichten zumeist in etwa 2-4 Kilometern Höhe befand. In der Höhe wurden INP-Konzentrationen gefunden, die im Mittel um einen Faktor 10 größer waren als auf Bodenniveau. Es wird gefolgert, dass INP-Messungen am Boden möglicherweise nur begrenzte Aussagekraft über die Situation nahe der Wolkenbildung besitzen. Im Rahmen BACCHUS-Projekts wurden zwischen August 2014 und Januar 2017 (mit Unterbrechungen) alle 1-2 Tage Proben an drei Reinluftstationen gesammelt (insgesamt über 900). Das INP-Messnetz mit einer geographischen Ausdehnung von der Arktis zum Äquator bestand aus Stationen in Spitzbergen, Martinique und im Amazonas. Die Station im brasilianischen Regenwald ist durch wechselnde Bedingungen von sauberer Regen- und verunreinigter Trockenzeit charakterisiert. In der Trockenzeit steigen die Partikelkonzentrationen durch starke Belastung aus Biomassenverbrennung um eine Größenordnung an; eine gleichzeitige Zunahme der INP-Konzentrationen konnte nicht beobachtet werden. Daraus kann vermutet werden, dass Partikel aus Feueremissionen keine ausgezeichneten Fähigkeiten zur Eisnukleation aufweisen. Die INP-Konzentrationen in der Karibik konnten mit dem Jahresgang von transportieren Saharastaub in Verbindung gebracht werden. In der Arktis wurden die niedrigsten INP-Konzentrationen der drei Stationen beobachtet. Zum Zeitpunkt des Erstellens dieser Arbeit können die determinierenden Einflussfaktoren, sowie der anthropogene Einfluss zur Zeit des arktischen Dunstes noch nicht abschließend geklärt werden.
Airborne transmission of SARS-CoV-2 through virus-containing aerosol particles has been established as an important pathway for Covid-19 infection. Suitable measures to prevent such infections are imperative, especially in situations when a high number of persons convene in closed rooms. Here we tested the efficiency and practicability of operating four air purifiers equipped with HEPA filters in a high school classroom while regular classes were taking place. We monitored the aerosol number concentration for particles > 3 nm at two locations in the room, the aerosol size distribution in the range from 10 nm to 10 µm, PM10 and CO2 concentration. For comparison, we performed similar measurements in a neighboring classroom without purifiers. In times when classes were conducted with windows and door closed, the aerosol concentration was reduced by more than 90 % within less than 30 minutes when running the purifiers (air exchange rate 5.5 h-1). The reduction was homogeneous throughout the room and for all particle sizes. The measurements are supplemented by a calculation estimating the maximum concentration levels of virus-containing aerosol from a highly contagious person speaking in a closed room with and without air purifiers. Measurements and calculation demonstrate that air purifiers potentially represent a well-suited measure to reduce the risks of airborne transmission of SARS-CoV-2 substantially. Staying for two hours in a closed room with a highly infective person, we estimate that the inhaled dose is reduced by a factor of six when using air purifiers with a total air exchange rate of 5.7 h-1.
Airborne transmission of SARS-CoV-2 through virus-containing aerosol particles has been established as an important pathway for Covid-19 infection. Suitable measures to prevent such infections are imperative, especially in situations when a high number of persons convene in closed rooms. Here we tested the efficiency and practicability of operating four air purifiers equipped with HEPA filters in a high school classroom while regular classes were taking place. We monitored the aerosol number concentration for particles >3 nm at two locations in the room, the aerosol size distribution in the range from 10 nm to 10 µm, PM10 and CO2 concentration. For comparison, we performed similar measurements in a neighboring classroom without purifiers. In times when classes were conducted with windows and door closed, the aerosol concentration was reduced by more than 90% within less than 30 min when running the purifiers (air exchange rate 5.5 h−1). The reduction was homogeneous throughout the room and for all particle sizes. The measurements are supplemented by a calculation estimating the maximum concentration levels of virus-containing aerosol from a highly contagious person speaking in a closed room with and without air purifiers. Measurements and calculation demonstrate that air purifiers potentially represent a well-suited measure to reduce the risks of airborne transmission of SARS-CoV-2 substantially. Staying for 2 h in a closed room with a highly infective person, we estimate that the inhaled dose is reduced by a factor of six when using air purifiers with a total air exchange rate of 5.7 h−1.
By means of available ice nucleating particle (INP) parameterization schemes we compute profiles of dust INP number concentration utilizing Polly-XT and CALIPSO lidar observations during the INUIT-BACCHUS-ACTRIS 2016 campaign. The polarization-lidar photometer networking (POLIPHON) method is used to separate dust and non-dust aerosol backscatter, extinction, mass concentration, particle number concentration (for particles with radius > 250 nm) and surface area concentration. The INP final products are compared with aerosol samples collected from unmanned aircraft systems (UAS) and analyzed using the ice nucleus counter FRIDGE.
Ice-nucleating particle concentrations of the past: insights from a 600-year-old Greenland ice core
(2020)
Ice-nucleating particles (INPs) affect the microphysics in cloud and precipitation processes. Hence, they modulate the radiative properties of clouds. However, atmospheric INP concentrations of the past are basically unknown. Here, we present INP measurements from an ice core in Greenland, which dates back to the year 1370. In total 135 samples were analyzed with the FRIDGE droplet freezing assay in the temperature range from −14 to −35 ∘C. The sampling frequency was set to 1 in 10 years from 1370 to 1960. From 1960 to 1990 the frequency was increased to one sample per year. Additionally, a few special events were probed, including volcanic episodes. The typical time coverage of a sample was on the order of a few months. Historical atmospheric INP concentrations were estimated with a conversion factor, which depends on the snow accumulation rate of the ice core, particle dry deposition velocity, and wet scavenging ratio. Typical atmospheric INP concentrations were on the order of 0.1 L−1 at −25 ∘C. The INP variability was found to be about 1–2 orders of magnitude. Yet, the short-term variability from samples over a seasonal cycle was considerably lower. INP concentrations were significantly correlated to some chemical tracers derived from continuous-flow analysis (CFA) and ion chromatography (IC) over a broad range of nucleation temperatures. The highest correlation coefficients were found for the particle concentration (spherical diameter dp > 1.2 µm). The correlation is higher for a time period of seasonal samples, where INP concentrations follow a clear annual pattern, highlighting the importance of the annual dust input in Greenland from East Asian deserts during spring. Scanning electron microscopy (SEM) analysis of selected samples found mineral dust to be the dominant particle fraction, verifying their significance as INPs. Overall, the concentrations compare reasonably well to present-day INP concentrations, albeit they are on the lower side. However, we found that the INP concentration at medium supercooled temperatures differed before and after 1960. Average INP concentrations at −23, −24, −25, −26, and −28 ∘C were significantly higher (and more variable) in the modern-day period, which could indicate a potential anthropogenic impact, e.g., from land-use change.