Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Instrumentation & Devices (1)
- LILBID-MS (1)
- Massenspektrometrie (1)
- Molecular Interactions (1)
- Structural Biology (1)
- cell-free expression (1)
- elementary school (1)
- ionization (1)
- mass spectrometry (1)
- math achievement (1)
As demonstrated by the Overlapping Waves Model (Siegler, 1996), children’s strategy use in arithmetic tasks is variable, adaptive, and changes gradually with age and experience. In this study, first grade elementary school children (n = 73), who scored high, middle, or low in a standardized scholastic mathematic achievement test, were confronted with different arithmetic tasks (simple addition, e.g., 3 + 2, simple subtraction, e.g., 7 – 2, and more advanced addition, e.g., 7 + 9) to evoke different calculation strategies. Video analysis and children’s self-report were used to identify individual strategy behavior. In accordance with the Overlapping Waves Model, children in all achievement groups showed variable and multiple strategy usage and adapted their behavior to the tasks of the different categories. We demonstrated that not only low achievers differed from normal achievers but also that high achievers exhibited a unique pattern of strategy behavior in early mathematics.
The formation of oligomers of the amyloid-β peptide plays a key role in the onset of Alzheimer's disease. We describe herein the investigation of disease-relevant small amyloid-β oligomers by mass spectrometry and ion mobility spectrometry, revealing functionally relevant structural attributes. In particular, we can show that amyloid-β oligomers develop in two distinct arrangements leading to either neurotoxic oligomers and fibrils or non-toxic amorphous aggregates. Comprehending the key-attributes responsible for those pathways on a molecular level is a pre-requisite to specifically target the peptide's tertiary structure with the aim to promote the emergence of non-toxic aggregates. Here, we show for two fibril inhibiting ligands, an ionic molecular tweezer and a hydrophobic peptide that despite their different interaction mechanisms, the suppression of the fibril pathway can be deduced from the disappearance of the corresponding structure of the first amyloid-β oligomers.
The bacteriophage ΦX174 causes large pore formation in Escherichia coli and related bacteria. Lysis is mediated by the small membrane-bound toxin ΦX174-E, which is composed of a transmembrane domain and a soluble domain. The toxin requires activation by the bacterial chaperone SlyD and inhibits the cell wall precursor forming enzyme MraY. Bacterial cell wall biosynthesis is an important target for antibiotics; therefore, knowledge of molecular details in the ΦX174-E lysis pathway could help to identify new mechanisms and sites of action. In this study, cell-free expression and nanoparticle technology were combined to avoid toxic effects upon ΦX174-E synthesis, resulting in the efficient production of a functional full-length toxin and engineered derivatives. Pre-assembled nanodiscs were used to study ΦX174-E function in defined lipid environments and to analyze its membrane insertion mechanisms. The conformation of the soluble domain of ΦX174-E was identified as a central trigger for membrane insertion, as well as for the oligomeric assembly of the toxin. Stable complex formation of the soluble domain with SlyD is essential to keep nascent ΦX174-E in a conformation competent for membrane insertion. Once inserted into the membrane, ΦX174-E assembles into high-order complexes via its transmembrane domain and oligomerization depends on the presence of an essential proline residue at position 21. The data presented here support a model where an initial contact of the nascent ΦX174-E transmembrane domain with the peptidyl-prolyl isomerase domain of SlyD is essential to allow a subsequent stable interaction of SlyD with the ΦX174-E soluble domain for the generation of a membrane insertion competent toxin.
Structural Biology has moved beyond the aim of simply identifying the components of a cellular subsystem towards analysing the dynamics and interactions of multiple players within a cell. This focal shift comes with additional requirements for the analytical tools used to investigate these systems of increased size and complexity, such as Native Mass Spectrometry, which has always been an important tool for structural biology. Scientific advance and recent developments, such as new ways to mimic a cell membrane for a membrane protein, have caused established methods to struggle to keep up with the increased demands. In this review, we summarize the possibilities, which Laser Induced Liquid Bead Ion Desorption (LILBID) mass spectrometry offers with regard to the challenges of modern structural biology, like increasingly complex sample composition, novel membrane mimics and advanced structural analysis, including next neighbor relations and the dynamics of complex formation.
Biomoleküle, insbesondere Membranproteine (MPs), sind oftmals sehr sensitiv gegenüber ihrer chemischen Umgebung, wie pH-Wert, Puffer, Salzkonzentration und vielen weiteren Faktoren. MPs stabil und funktional in Lösung zu halten ist nicht trivial. Sie stellen deshalb eine besondere Herausforderung bei der Analyse von biologischen Systemen dar. Aus diesem Grund wurden und werden nach wie vor sogenannte membrane mimicking-(MM-) Systeme, wie beispielsweise Nanodiscs (NDs) oder styrene-maleic acid lipid particles (SMALPs), untersucht und entwickelt, um MPs eine naturähnliche Umgebung in Form einer Lipid-Doppelschicht zu bieten und sie so in ihrer natürlichen Konformation und natürlichen Funktionsweise/Aktivität in Lösung zu halten.
Laser induced liquid bead ion desorption (LILBID) Massenspektrometrie (MS) hat sich als hervorragende analytische Methode herausgestellt, um MPs in Kombination mit MM-Systemen zu untersuchen. LILBID-MS bietet nicht nur die Möglichkeit Proteine an sich zu identifizieren, sondern ermöglicht ebenfalls eine zerstörungsfreie Analyse von nicht-kovalent gebundenen Proteinkomplexen, sowie die Detektion einzelner Subkomplexe eines Proteinkomplexes. Auch die Analyse von Protein-Ligand-Wechselwirkungen ist möglich. Bei der LILBID-Ionisationsmethode werden kleine Tröpfchen erzeugt, die einen wässrig gelösten Analyt enthalten. Die Analyt-Tröpfchen werden anschließend mittels IR-Laser bestrahlt, wodurch der Analyt freigesetzt und massenspektrometrisch analysiert werden kann.
Diese Dissertation beschäftigt sich zum einen mit der Analyse des Lyse-Proteins ΦX174-E der Bakteriophage ΦX174, zum anderen mit Untersuchungen zur Histidinkinase SpaK aus B. subtilis in Kombination mit MMs. Weiterhin wird die Frage geklärt, ob und wie gut sich LILBID-MS zur Analyse von Saposin-Nanopartikel-(SapNPs)-solubilisierten MPs eignet. Darüber hinaus wird in dieser Dissertation die Darstellung von SapNP-solubilisierten MPs mittels zellfreier Proteinsynthese näher charakterisiert und untersucht welche Parameter aus präparativer Sicht optimiert werden können.
In vorausgegangenen Analysen von ND-solubilisierten MPs mittels LILBID-MS zeigte sich, dass manche in Verbindung mit NDs genutzten Lipide unerwünschte Signale im Spektrum zur Folge haben, die aus massiven Lipid-Anhaftungen am MSP oder dem Analyten resultieren. Überlappungen der m/z-Signale verschiedener Analyt- und/oder Komplexkomponenten mit diesen Lipid-Cluster-Signalen kann wiederum zum Verlust von Informationen führen. Daher beschäftigt sich ein weiterer Teil dieser Arbeit mit der Frage, ob durch den Einsatz von UV-schaltbaren Lipiden der Anwendungsbereich und/oder die Auflösung von LILBID-MS erweitert und verbessert werden kann.
Um biologische Prozesse zu verstehen ist es ebenfalls wichtig die zeitlichen/kinetischen Aspekte einer Reaktion zu untersuchen/kennen, sowie molekulare Prozesse gezielt zu kontrollieren. Licht hat sich hierbei als ein hervorragendes Werkzeug in der Analytik, sowie in der molekularen Prozesskontrolle etabliert. Licht bietet den Vorteil sehr selektiv eingesetzt werden zu können und sowohl orts- als auch zeitaufgelöst Informationen liefern zu können. Das gezielte Triggern einer Reaktion oder einer Protein-Protein-Interaktion kann beispielsweise durch sog. photo-cleaving von photolabilen Schutzgruppen ermöglicht werden. Bisweilen bietet die native MS nur wenig Möglichkeiten schnelle Reaktionen zu analysieren und kinetische Informationen zu gewinnen. Daher beschäftigt sich ein weiterer Teil dieser Dissertation damit zu untersuchen, ob und wie sich lichtgesteuerte Reaktionen im LILBID-Ionisationsprozess induzieren und gegebenenfalls auch zeitlich analysieren und charakterisieren lassen können.
The TOM complex is the main entry point for precursor proteins into mitochondria. Precursor proteins containing targeting sequences are recognized by the TOM complex and imported into the mitochondria. We have determined the structure of the TOM core complex from Neurospora crassa by single-particle cryoEM at 3.3 Å resolution, showing its interaction with a bound presequence at 4 Å resolution, and of the TOM holo complex including the Tom20 receptor at 6-7 Å resolution. TOM is a transmembrane complex consisting of two β-barrels, three receptor subunits and three short transmembrane subunits. Tom20 has a transmembrane helix and a receptor domain on the cytoplasmic side. We propose that Tom20 acts as a dynamic gatekeeper, guiding precursor proteins into the pores of the TOM complex. We analyze the interactions of Tom20 with other TOM subunits, present insights into the structure of the TOM holo complex, and suggest a translocation mechanism.