Refine
Document Type
- Article (24)
- Contribution to a Periodical (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (27)
Is part of the Bibliography
- no (27)
Keywords
- Forensic entomology (6)
- forensic entomology (6)
- Calliphoridae (5)
- Thailand (4)
- Blow flies (2)
- Development (2)
- Geographic variation (2)
- Lucilia sericata (2)
- Post-mortem interval (2)
- Accumulated degree days (1)
Institute
- Medizin (22)
- Institut für Ökologie, Evolution und Diversität (7)
- Präsidium (2)
- Fachübergreifend (1)
Knowledge on the postmortem interval (PMI) of wild boar (Sus scrofa) carcasses is crucial in the event of an outbreak of African swine fever in a wild boar population. Therefore, a thorough understanding of the decomposition process of this species in different microhabitats is necessary. We describe the decomposition process of carcasses exposed in cages. Trial 1 compared a wild boar and a domestic pig (Sus scrofa domesticus) under similar conditions; Trial 2 was performed with three wild boar piglets in the sunlight, shade, or in a wallow, and Trial 3 with two adult wild boar in the sun or shade. The wild boar decomposed more slowly than the domestic pig, which shows that standards derived from forensic studies on domestic pigs are not directly applicable to wild boar. The carcasses exposed to the sun decomposed faster than those in the shade did, and the decomposition of the carcass in the wallow took longest. To assess the state of decomposition, we adapted an existing total body scoring system originally developed for humans. Based on our studies, we propose a checklist tailored to wild boar carcasses found in the field that includes the most important information for a reliable PMI estimation.
Forensic entomology
(2017)
For many members of the forensic community, insects still have an exotic status. This may be one reason why forensic entomology, the analysis of insect evidence for forensic and legal purposes, has not yet achieved the significance it deserves in forensic sciences. The present special issue may help to change that. ...
Background: Chrysomya megacephala is a blow fly species of medical and forensic importance worldwide. Understanding its bionomics is essential for both designing effective fly control programs and its use in forensic investigations.
Methods: The daily flight activity, seasonal abundance related to abiotic factors (temperature, relative humidity and rainfall) and reproductive potential of this species was investigated. Adult flies were sampled twice a month for one year from July 2013 to June 2014 in three different ecotypes (forest area, longan orchard and palm plantation) of Chiang Mai Province, northern Thailand, using semi-automatic funnel traps. One-day tainted beef offal was used as bait.
Results: A total of 88,273 flies were sampled, of which 82,800 flies (93.8%) were caught during the day (from 06:00 to 18:00 h); while 5473 flies (6.2%) were caught at night (from 18:00 to 06:00 h). Concurrently, the abundance of C. megacephala was higher in the forest area (n = 31,873; 36.1%) and palm plantation (n = 31,347; 35.5%), compared to the longan orchard (n = 25,053; 28.4%). The number of females was significantly higher than that of males, exhibiting a female to male sex ratio of 2.36:1. Seasonal fluctuation revealed the highest abundance of C. megacephala in summer, but low numbers in the rainy season and winter. Fly density was significantly positively correlated with temperature, but negatively correlated with relative humidity. No correlation between numbers of C. megacephala with rainfall was found. Activity occurred throughout the daytime with high numbers from 06:00 to 18:00 h in summer and 12:00 to 18:00 h in the rainy season and winter. As for the nocturnal flight activity, a small number of flies were collected in summer and the rainy season, while none were collected in the winter. Dissection of the females indicated that fecundity was highest during the rainy season, followed by winter and summer.
Conclusions: Since the assessment of daily, seasonal activity and the reproductive potential of C. megacephala remains a crucial point to be elucidated, this extensive study offers insights into bionomics, which may be considered for integrated fly control strategies and forensic entomology issues.
Blow flies are the first insect group to colonize on a dead body and thus correct species identification is a crucial step in forensic investigations for estimating the minimum postmortem interval, as developmental times are species-specific. Due to the difficulty of traditional morphology-based identification such as the morphological similarity of closely related species and uncovered taxonomic keys for all developmental stages, DNA-based identification has been increasing in interest, especially in high biodiversity areas such as Thailand. In this study, the effectiveness of long mitochondrial cytochrome c oxidase subunit I and II (COI and COII) sequences (1247 and 635 bp, respectively) in identifying 16 species of forensically relevant blow flies in Thailand (Chrysomya bezziana, Chrysomya chani, Chrysomya megacephala, Chrysomya nigripes, Chrysomya pinguis, Chrysomya rufifacies, Chrysomya thanomthini, Chrysomya villeneuvi, Lucilia cuprina, Lucilia papuensis, Lucilia porphyrina, Lucilia sinensis, Hemipyrellia ligurriens, Hemipyrellia pulchra, Hypopygiopsis infumata, and Hypopygiopsis tumrasvini) was assessed using distance-based (Kimura two-parameter distances based on Best Match, Best Close Match, and All Species Barcodes criteria) and tree-based (grouping taxa by sequence similarity in the neighbor-joining tree) methods. Analyses of the obtained sequence data demonstrated that COI and COII genes were effective markers for accurate species identification of the Thai blow flies. This study has not only demonstrated the genetic diversity of Thai blow flies, but also provided a reliable DNA reference database for further use in forensic entomology within the country and other regions where these species exist.
Simple Summary: Forensic entomologists are most often tasked with determining when arthropods colonized living or deceased vertebrates. In most cases, this estimation involves humans; however, pets, livestock, and other domesticated animals can also be illegally killed or victims of neglect. Globally, there is no standard format for the case report, and much of the content is based on the personal preferences of the analyst or standards set within a country. The article below proposes a general overview of sections to be considered when drafting a case report.
Abstract: Forensic practitioners analyzing entomological evidence are faced with numerous challenges when presenting their findings to law practitioners, particularly in terms of terminology used to describe insect age, what this means for colonization time of remains, and the limitations to estimates made. Due to varying legal requirements in different countries, there is no standard format for the entomological case report prepared, nor any guidelines as to the sections that are required, optional or unnecessary in a case report. The authors herein propose sections that should be considered when drafting an entomological case report. The criteria under which entomological evidence is analyzed are discussed, as well as the limitations for each criterion. The concept of a global, standardized entomological case report is impossible to achieve due to national legislative differences, but the authors here propose a basic template which can be adapted and changed according to the needs of the practitioner. Furthermore, while the discussion is fairly detailed, capturing all differences between nations could not be accomplished, and those initiating casework for the first time are encouraged to engage other practicing forensic entomologists or professional associations within their own nation or region, to ensure a complete report is generated that meets lab or national requirements, prior to generating a finalized report.
Blow flies are worldwide the most important insects from a forensic point of view. In Thailand, aside from the two most common species, Chrysomya megacephala (F.) and Chrysomya rufifacies (Macquart), Chrysomya chani Kurahashi was also found to be of forensic importance. We present a case of a human female cadaver in its bloated stage of decomposition, discovered at Pachangnoi Subdistrict, northern Thailand. Entomological sampling during the autopsy displayed an assemblage of numerous dipteran larvae. Macroscopic observations showed the coexistence of third instar larvae of the three blow flies C. megacephala, Chrysomya villeneuvi Patton, an unknown blow fly species and one muscid, Hydrotaea sp. The minimum post-mortem interval was estimated to be six days, based on the developmental rate of C. megacephala. The ID of the unknown larva, which is the focus of this report, was revealed later as C. chani by DNA sequencing, using a 1205 bp of cytochrome c oxidase subunit I (COI). The occurrence of C. chani on a human body revealed the need to analyse and describe the morphology of its immature stage, to enable forensic entomologists to identify this fly species in future cases. The morphological examination of the third instar was performed, revealing peculiar characteristics: protuberant tubercles encircling abdominal segments; 9–11 lobes on the anterior spiracle; six prominent pairs of tubercles along the peripheral rim of the eighth abdominal segment; a heavily sclerotized complete peritreme of the posterior spiracles. A key to differentiate the third instar of blow flies of forensic importance in Thailand is provided.
The analysis of postmortem protein degradation has become of large interest for the estimation of the postmortem interval (PMI). Although several techniques have been published in recent years, protein degradation-based techniques still largely did not exceed basic research stages. Reasons include impractical and complex sampling procedures, as well as highly variable protocols in the literature, making it difficult to compare results. Following a three-step procedure, this study aimed to establish an easily replicable standardized procedure for sampling and processing, and further investigated the reliability and limitations for routine application. Initially, sampling and processing were optimized using a rat animal model. In a second step, the possible influences of sample handling and storage on postmortem protein degradation dynamics were assessed on a specifically developed human extracorporeal degradation model. Finally, the practical application was simulated by the collection of tissue in three European forensic institutes and an international transfer to our forensic laboratory, where the samples were processed and analyzed according to the established protocol.
Jens Amendt hat die internationale Konferenz der Forensischen Entomologie von seinem Rechner aus in Frankfurt geleitet. Sein Resümee: Die virtuelle Veranstaltung mit 260 Teilnehmenden hat insgesamt sehr gut geklappt, aber Mikrofon und Kamera sollte man gerade als Organisator immer gut im Auge behalten.
Recent reports have shown a dramatic loss in insect species and biomass. Since forensic entomology relies on the presence of insects, the question is whether this decline effects the discipline. The present review confirms that numerous studies document insect population declines or even extinction, despite the fact that the rates of decline and the methods used to demonstrate it are still much debated. However, with regard to a decline in necrophagous insects, there is little or only anecdotal data available. A hypothetical decrease in species diversity and population density in necrophagous insects could lead to a delayed colonization of dead bodies and a modified succession pattern due to the disappearance or new occurrence of species or their altered seasonality. Climate change as one of the drivers of insect decline will probably also have an impact on necrophagous insects and forensic entomology, leading to reduced flight and oviposition activity, modified growth rates and, therefore, an over- or underestimation of a minimum postmortem interval. Global warming with increased temperature and extreme weather requires a better understanding about necrophagous insect responses to environmental variations. Here, transgeneration effects in particular should be analysed in greater depth as this will help to understand rapid adaptation and plasticity in insects of forensic importance.