• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Roeper, Jochen (19)
  • Schneider, Gaby (5)
  • Schiemann, Julia (3)
  • Auburger, Georg (2)
  • Bingmer, Markus (2)
  • Deller, Thomas (2)
  • Duvarci, Sevil (2)
  • Jendrach, Marina (2)
  • Machado Costa, Kauê (2)
  • Stojanovic, Strahinja (2)
+ more

Year of publication

  • 2020 (6)
  • 2009 (3)
  • 2012 (2)
  • 2019 (2)
  • 2021 (2)
  • 2011 (1)
  • 2015 (1)
  • 2017 (1)
  • 2018 (1)

Document Type

  • Article (19)

Language

  • English (19)

Has Fulltext

  • yes (19)

Is part of the Bibliography

  • no (19)

Keywords

  • Parkinson's disease (2)
  • Action potential (1)
  • Autophagy (1)
  • Axon (1)
  • Basal ganglia (1)
  • Burst (1)
  • Cancer (1)
  • Cellular neuroscience (1)
  • Critical Online Reasoning Assessment (1)
  • Developmental disorders (1)
+ more

Institute

  • Medizin (17)
  • Informatik (2)
  • Mathematik (2)
  • Biowissenschaften (1)
  • Frankfurt Institute for Advanced Studies (FIAS) (1)
  • Senckenbergische Naturforschende Gesellschaft (1)

19 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration (2009)
Gispert, Suzana ; Ricciardi, Filomena ; Kurz, Alexander ; Azizov, Mekhman ; Hoepken, Hans-Hermann ; Becker, Dorothea ; Voos, Wolfgang ; Leuner, Kristina ; Müller, Walter E. ; Kudin, Alexei P. ; Kunz, Wolfram S. ; Zimmermann, Annabelle ; Roeper, Jochen ; Wenzel, Dirk ; Jendrach, Marina ; García-Arencíbia, Moisés ; Fernández-Ruiz, Javier ; Huber, Leslie ; Rohrer, Hermann ; Barrera, Miguel ; Reichert, Andreas S. ; Rüb, Udo ; Chen, Amy ; Nussbaum, Robert L. ; Auburger, Georg
Background Parkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Methodology/Principal Findings Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Conclusion Thus, aging Pink1 -/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.
A model for the joint evaluation of burstiness and regularity in oscillatory spike trains (2009)
Bingmer, Markus ; Schiemann, Julia ; Roeper, Jochen ; Schneider, Gaby
Poster presentation: Introduction The ability of neurons to emit different firing patterns is considered relevant for neuronal information processing. In dopaminergic neurons, prominent patterns include highly regular pacemakers with separate spikes and stereotyped intervals, processes with repetitive bursts and partial regularity, and irregular spike trains with nonstationary properties. In order to model and quantify these processes and the variability of their patterns with respect to pharmacological and cellular properties, we aim to describe the two dimensions of burstiness and regularity in a single model framework. Methods We present a stochastic spike train model in which the degree of burstiness and the regularity of the oscillation are described independently and with two simple parameters. In this model, a background oscillation with independent and normally distributed intervals gives rise to Poissonian spike packets with a Gaussian firing intensity. The variability of inter-burst intervals and the average number of spikes in each burst indicate regularity and burstiness, respectively. These parameters can be estimated by fitting the model to the autocorrelograms. This allows to assign every spike train a position in the two-dimensional space described by regularity and burstiness and thus, to investigate the dependence of the firing patterns on different experimental conditions. Finally, burst detection in single spike trains is possible within the model because the parameter estimates determine the appropriate bandwidth that should be used for burst identification. Results and Discussion We applied the model to a sample data set obtained from dopaminergic substantia nigra and ventral tegmental area neurons recorded extracellularly in vivo and studied differences between the firing activity of dopaminergic neurons in wildtype and K-ATP channel knock-out mice. The model is able to represent a variety of discharge patterns and to describe changes induced pharmacologically. It provides a simple and objective classification scheme for the observed spike trains into pacemaker, irregular and bursty processes. In addition to the simple classification, changes in the parameters can be studied quantitatively, also including the properties related to bursting behavior. Interestingly, the proposed algorithm for burst detection may be applicable also to spike trains with nonstationary firing rates if the remaining parameters are unaffected. Thus, the proposed model and its burst detection algorithm can be useful for the description and investigation of neuronal firing patterns and their variability with cellular and experimental conditions.
A simple Hidden Markov Model for midbrain dopaminergic neurons (2009)
Gerhard, Felipe ; Schiemann, Julia ; Roeper, Jochen ; Schneider, Gaby
Poster presentation: Introduction Dopaminergic neurons in the midbrain show a variety of firing patterns, ranging from very regular firing pacemaker cells to bursty and irregular neurons. The effects of different experimental conditions (like pharmacological treatment or genetical manipulations) on these neuronal discharge patterns may be subtle. Applying a stochastic model is a quantitative approach to reveal these changes. ...
Detection and localization of multiple rate changes in Poisson spike trains : poster presentation from Twentieth Annual Computational Neuroscience Meeting CNS*2011 Stockholm, Sweden, 23 - 28 July 2011 (2011)
Tillmann, Marietta ; Messer, Michael ; Bingmer, Markus ; Schiemann, Julia ; Neininger, Ralph ; Roeper, Jochen ; Schneider, Gaby
Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. In statistical spike train analysis, stochastic point process models usually assume stationarity, in particular that the underlying spike train shows a constant firing rate (e.g. [1]). However, such models can lead to misinterpretation of the associated tests if the assumption of rate stationarity is not met (e.g. [2]). Therefore, the analysis of nonstationary data requires that rate changes can be located as precisely as possible. However, present statistical methods focus on rejecting the null hypothesis of stationarity without explicitly locating the change point(s) (e.g. [3]). We propose a test for stationarity of a given spike train that can also be used to estimate the change points in the firing rate. Assuming a Poisson process with piecewise constant firing rate, we propose a Step-Filter-Test (SFT) which can work simultaneously in different time scales, accounting for the high variety of firing patterns in experimental spike trains. Formally, we compare the numbers N1=N1(t,h) and N2=N2(t,h) of spikes in the time intervals (t-h,t] and (h,t+h]. By varying t within a fine time lattice and simultaneously varying the interval length h, we obtain a multivariate statistic D(h,t):=(N1-N2)/V(N1+N2), for which we prove asymptotic multivariate normality under homogeneity. From this a practical, graphical device to spot changes of the firing rate is constructed. Our graphical representation of D(h,t) (Figure 1A) visualizes the changes in the firing rate. For the statistical test, a threshold K is chosen such that under homogeneity, |D(h,t)|<K holds for all investigated h and t with probability 0.95. This threshold can indicate potential change points in order to estimate the inhomogeneous rate profile (Figure 1B). The SFT is applied to a sample data set of spontaneous single unit activity recorded from the substantia nigra of anesthetized mice. In this data set, multiple rate changes are identified which agree closely with visual inspection. In contrast to approaches choosing one fixed kernel width [4], our method has advantages in the flexibility of h.
In vivo functional diversity of midbrain dopamine neurons within identified axonal projections (2019)
Farassat, Navid ; Machado Costa, Kauê ; Stojanovic, Strahinja ; Albert, Stefan ; Kovacheva, Lora ; Shin, Josef ; Egger, Richard ; Somayaji, Mahalakshmi ; Duvarci, Sevil ; Schneider, Gaby ; Roeper, Jochen
Functional diversity of midbrain dopamine (DA) neurons ranges across multiple scales, from differences in intrinsic properties and connectivity to selective task engagement in behaving animals. Distinct in vitro biophysical features of DA neurons have been associated with different axonal projection targets. However, it is unknown how this translates to different firing patterns of projection-defined DA subpopulations in the intact brain. We combined retrograde tracing with single-unit recording and labelling in mouse brain to create an in vivo functional topography of the midbrain DA system. We identified differences in burst firing among DA neurons projecting to dorsolateral striatum. Bursting also differentiated DA neurons in the medial substantia nigra (SN) projecting either to dorsal or ventral striatum. We found differences in mean firing rates and pause durations among ventral tegmental area (VTA) DA neurons projecting to lateral or medial shell of nucleus accumbens. Our data establishes a high-resolution functional in vivo landscape of midbrain DA neurons.
Axonal projection-specific differences in somatodendritic α2 autoreceptor function in locus coeruleus neurons (2019)
Wagner-Altendorf, Tobias Alexander ; Fischer, Beatrice ; Roeper, Jochen
The locus coeruleus (LC) contains the majority of central noradrenergic neurons sending wide projections throughout the entire CNS. The LC is considered to be essential for multiple key brain functions including arousal, attention and adaptive stress responses as well as higher cognitive functions and memory. Electrophysiological studies of LC neurons have identified several characteristic functional features such as low-frequency pacemaker activity with broad action potentials, transient high-frequency burst discharges in response to salient stimuli and an apparently homogeneous inhibition of firing by activation of somatodendritic α2 autoreceptors (α2AR). While stress-mediated plasticity of the α2AR response has been described, it is currently unclear whether different LC neurons projecting to distinct axonal targets display differences in α2AR function. Using fluorescent beads-mediated retrograde tracing in adult C57Bl6/N mice, we compared the anatomical distributions and functional in vitro properties of identified LC neurons projecting either to medial prefrontal cortex, hippocampus or cerebellum. The functional in vitro analysis of LC neurons confirmed their mostly uniform functional properties regarding action potential generation and pacemaker firing. However, we identified significant differences in tonic and evoked α2AR-mediated responses. While hippocampal-projecting LC neurons were partially inhibited by endogenous levels of norepinephrine and almost completely silenced by application of saturating concentrations of the α2 agonist clonidine, prefrontal-projecting LC neurons were not affected by endogenous levels of norepinephrine and only partially inhibited by saturating concentrations of clonidine. Thus, we identified a limited α2AR control of electrical activity for prefrontal-projecting LC neurons indicative of functional heterogeneity in the LC-noradrenergic system.
Loss of lysosome-associated membrane protein 3 (LAMP3) enhances cellular vulnerability against proteasomal inhibition (2015)
Domínguez Bautista, Jorge Antolio ; Klinkenberg, Michael ; Brehm, Nadine ; Subramaniam, Mahalakshmi ; Kern, Beatrice ; Roeper, Jochen ; Auburger, Georg ; Jendrach, Marina
The family of lysosome-associated membrane proteins (LAMP) includes the ubiquitously expressed LAMP1 and LAMP2, which account for half of the proteins in the lysosomal membrane. Another member of the LAMP family is LAMP3, which is expressed only in certain cell types and differentiation stages. LAMP3 expression is linked with poor prognosis of certain cancers, and the locus where it is encoded was identified as a risk factor for Parkinson's disease (PD). Here, we investigated the role of LAMP3 in the two main cellular degradation pathways, the proteasome and autophagy. LAMP3 mRNA was not detected in mouse models of PD or in the brain of human patients. However, it was strongly induced upon proteasomal inhibition in the neuroblastoma cell line SH-SY5Y. Induction of LAMP3 mRNA following proteasomal inhibition was dependent on UPR transcription factor ATF4 signaling and induced autophagic flux. Prevention of LAMP3 induction enhanced apoptotic cell death. In summary, these data demonstrate that LAMP3 regulation as part of the UPR contributes to protein degradation and cell survival during proteasomal dysfunction. This link between autophagy and the proteasome may be of special importance for the treatment of tumor cells with proteasomal inhibitors.
In vivo patch-clamp recordings reveal distinct subthreshold signatures and threshold dynamics of midbrain dopamine neurons (2020)
Otomo, Kanako ; Perkins, Jessica ; Kulkarni, Anand ; Stojanovic, Strahinja ; Roeper, Jochen ; Paladini, Carlos A.
The in vivo firing patterns of ventral midbrain dopamine neurons are controlled by afferent and intrinsic activity to generate sensory cue and prediction error signals that are essential for reward-based learning. Given the absence of in vivo intracellular recordings during the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. To address this, we established in vivo whole-cell recordings and obtained over 100 spontaneously active, immunocytochemically-defined midbrain dopamine neurons in isoflurane-anaesthetized adult mice. We identified a repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. Dopamine neuron activity in vivo deviated from single-spike pacemaking by phasic increases in firing rate via two qualitatively distinct biophysical mechanisms: 1) a prolonged hyperpolarization preceding rebound bursts, accompanied by a hyperpolarizing shift in action potential threshold; and 2) a transient depolarization leading to high-frequency plateau bursts, associated with a depolarizing shift in action potential threshold. Our findings define a mechanistic framework for the biophysical implementation of dopamine neuron firing patterns in the intact brain.
Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome (2020)
Cooper, Alexis ; Butto, Tamer ; Hammer, Niklas ; Jagannath, Somanath ; Fend-Guella, Desiree Lucia ; Akhtar, Junaid ; Radyushkin, Konstantin ; Lesage, Florian ; Winter, Jennifer ; Strand, Susanne ; Roeper, Jochen ; Zechner, Ulrich ; Schweiger, Susann
Mutations in the actively expressed, maternal allele of the imprinted KCNK9 gene cause Birk-Barel intellectual disability syndrome (BBIDS). Using a BBIDS mouse model, we identify here a partial rescue of the BBIDS-like behavioral and neuronal phenotypes mediated via residual expression from the paternal Kcnk9 (Kcnk9pat) allele. We further demonstrate that the second-generation HDAC inhibitor CI-994 induces enhanced expression from the paternally silenced Kcnk9 allele and leads to a full rescue of the behavioral phenotype suggesting CI-994 as a promising molecule for BBIDS therapy. Thus, these findings suggest a potential approach to improve cognitive dysfunction in a mouse model of an imprinting disorder.
Undergraduate students’ critical online reasoning - process mining analysis (2020)
Schmidt, Susanne ; Zlatkin-Troitschanskaia, Olga ; Roeper, Jochen ; Klose, Verena ; Weber, Maruschka ; Bültmann, Ann-Kathrin ; Brückner, Sebastian
To successfully learn using open Internet resources, students must be able to critically search, evaluate and select online information, and verify sources. Defined as critical online reasoning (COR), this construct is operationalized on two levels in our study: (1) the student level using the newly developed Critical Online Reasoning Assessment (CORA), and (2) the online information processing level using event log data, including gaze durations and fixations. The written responses of 32 students for one CORA task were scored by three independent raters. The resulting score was operationalized as “task performance,” whereas the gaze fixations and durations were defined as indicators of “process performance.” Following a person-oriented approach, we conducted a process mining (PM) analysis, as well as a latent class analysis (LCA) to test whether—following the dual-process theory—the undergraduates could be distinguished into two groups based on both their process and task performance. Using PM, the process performance of all 32 students was visualized and compared, indicating two distinct response process patterns. One group of students (11), defined as “strategic information processers,” processed online information more comprehensively, as well as more efficiently, which was also reflected in their higher task scores. In contrast, the distributions of the process performance variables for the other group (21), defined as “avoidance information processers,” indicated a poorer process performance, which was also reflected in their lower task scores. In the LCA, where two student groups were empirically distinguished by combining the process performance indicators and the task score as a joint discriminant criterion, we confirmed these two COR profiles, which were reflected in high vs. low process and task performances. The estimated parameters indicated that high-performing students were significantly more efficient at conducting strategic information processing, as reflected in their higher process performance. These findings are so far based on quantitative analyses using event log data. To enable a more differentiated analysis of students’ visual attention dynamics, more in-depth qualitative research of the identified student profiles in terms of COR will be required.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks