Refine
Document Type
- Article (6)
- Conference Proceeding (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- soil erosion (3)
- SFAP (2)
- UAV (2)
- soil degradation (2)
- HEXAGON, CORONA (1)
- South Morocco (1)
- argan (1)
- argan trees (1)
- change mapping (1)
- dryland environments (1)
Institute
This article presents a multiscale approach for detecting and monitoring soil erosion phenomena (i.e. gully erosion) in the agro-industrial area around the city of Taroudannt, Souss basin, Morocco. The study area is characterized as semi-arid with an annual average precipitation of 200 mm. Water scarcity, high population dynamics and changing land use towards huge areas of irrigation farming present numerous threats to sustainability. The agro-industry produces citrus fruits and vegetables in monocropping, mainly for the European market. Badland areas strongly affected by gully erosion border the agricultural areas as well as residential areas. To counteract the significant loss of land, land-leveling measures are attempted to create space for plantations and greenhouses. In order to develop sustainable approaches to limit gully growth the detection and monitoring of gully systems is fundamental. Specific gully sites are monitored with unmanned aerial vehicle (UAV) taking small-format aerial photographs (SFAP). This enables extremely high-resolution analysis (SFAP resolution: 2-10 cm) of the actual size of the gully channels as well as a detailed continued surveillance of their growth. Transferring the methodology on a larger scale using Quickbird satellite data (resolution: 60 cm) leads to the possibility of a large-scale analysis of the whole area around the city of Taroudannt (Area extent: ca. 350 km²). The results will then reveal possible relationships of gully growth and agro-industrial management and may even illustrate further interdependencies. The main objective is the identification of areas with high gully-erosion risk due to non-sustainable land use and the development of mitigation strategies for the study area.
This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV’s log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents.
The endemic argan woodlands cover large parts of South Morocco and create a characteristic landscape with areas of sparsely vegetated and bare soil surfaces between single trees. This unique ecosystem has been under extensive agrosilvopastoral management for centuries and is now at risk of degradation caused by overgrazing and increasing scarcity and variability of rainfall.
To investigate susceptibility to wind erosion, we conducted an experimental–empirical study including wind tunnel tests and a drone‐generated digital elevation model and quantified wind‐erodible material on five different associated surface types by means of sediment catchers. The highest emission flux was measured on freshly ploughed surfaces (1875 g m–2 h–1), while older ploughed areas with a re‐established crust produced a much lower emission flux (795 g m–2 h–1). Extensive tillage may have been a sustainable practice for generations, but increasing drought and uncertainty of rainfall now lead to an acute risk of severe soil erosion and dust production. The typical crusted surfaces characterized by residual rock fragment accumulation and wash processes produced the second highest emission flux (1,354 g m–2 h–1). Material collected from tree‐shaded areas (933 g m–2 h–1) was revealed to be a considerable source of organic material, possibly affecting substrate conditions positively on a larger regional scale. The lowest flux was measured on rock fragment‐covered surfaces (301 g m–2 h–1).
The data show that open argan woodland may be a considerable source for wind erosion and dust production, depending on surface characteristics strongly related to management. An adapted management must include the conservation of argan trees to offer a promising approach to prevent severe wind erosion and dust production and mitigate possible impacts of land‐use change and climate change related shifts in wind and rainfall patterns.
The endemic argan tree (Argania spinosa) populations in southern Morocco are highly degraded due to overbrowsing, illegal firewood extraction and the expansion of intensive agriculture. Bare areas between the isolated trees increase due to limited regrowth; however, it is unknown if the trees influence the soil of the intertree areas. Hypothetically, spatial differences in soil parameters of the intertree area should result from the translocation of litter or soil particles (by runoff and erosion or wind drift) from canopy-covered areas to the intertree areas. In total, 385 soil samples were taken around the tree from the trunk along the tree drip line (within and outside the tree area) and the intertree area between two trees in four directions (upslope, downslope and in both directions parallel to the slope) up to 50 m distance from the tree. They were analysed for gravimetric soil water content, pH, electrical conductivity, percolation stability, total nitrogen content (TN), content of soil organic carbon (SOC) and C/N ratio. A total of 74 tension disc infiltrometer experiments were performed near the tree drip line, within and outside the tree area, to measure the unsaturated hydraulic conductivity. We found that the tree influence on its surrounding intertree area is limited, with, e.g., SOC and TN content decreasing significantly from tree trunk (4.4 % SOC and 0.3 % TN) to tree drip line (2.0 % SOC and 0.2 % TN). However, intertree areas near the tree drip line (1.3 % SOC and 0.2 % TN) differed significantly from intertree areas between two trees (1.0 % SOC and 0.1 % TN) yet only with a small effect. Trends for spatial patterns could be found in eastern and downslope directions due to wind drift and slope wash. Soil water content was highest in the north due to shade from the midday sun; the influence extended to the intertree areas. The unsaturated hydraulic conductivity also showed significant differences between areas within and outside the tree area near the tree drip line. This was the case on sites under different land usages (silvopastoral and agricultural), slope gradients or tree densities. Although only limited influence of the tree on its intertree area was found, the spatial pattern around the tree suggests that reforestation measures should be aimed around tree shelters in northern or eastern directions with higher soil water content or TN or SOC content to ensure seedling survival, along with measures to prevent overgrazing.
The endemic argan tree (Argania spinosa) populations in South Morocco are highly degraded due to overbrowsing, illegal firewood extraction and the expansion of intensive agriculture. Bare areas between the isolated trees increase due to limited regrowth, but show lower soil quality than their neighbouring tree areas. Hypothetically, spatial differences of soil quality of the intertree area should result from translocation of litter or soil particles (by runoff and erosion or wind drift) from canopy-covered areas to the intertree areas. 385 soil samples were taken around the tree from the trunk along the tree drip line (within and outside the tree area) as well as the intertree area between two trees in four directions (upslope, downslope and in both directions parallel to the slope) and analysed for soil moisture, pH, electrical conductivity, percolation stability, total nitrogen content, content of soil organic carbon and C/N ratio. 74 tension-disc infiltrometer experiments were performed near the tree drip line, within and outside the tree area, to measure the unsaturated hydraulic conductivity. We found that the tree influence on its surrounding intertree area is limited, with e.g., Corg- & N-content decreasing significantly from tree trunk to tree drip line. However, intertree areas near the tree drip line differed significantly from intertree areas between two trees, yet only with a small effect. Trends for spatial patterns could be found in eastern and downslope directions due to wind drift and slope wash. Soil moisture was highest in the north due to shade from the midday sun, the influence extended to the intertree areas. The unsaturated hydraulic conductivity also showed significant differences between areas within and outside the tree area near the tree drip line. Although only limited influence of the tree on its intertree area was found, the spatial pattern around the tree suggests that reforestation measures should be aimed around tree shelters in northern or eastern directions with higher soil moistures, N- or Corg-content to ensure seedling survival.
The endemic argan tree (Argania spinosa) populations in South Morocco are highly degraded due to their use as a biomass resource in dry years and illegal firewood extraction. The intensification and expansion of agricultural land lead to a retreat of the wooded area, while the remaining argan open woodlands are often overgrazed. Thus, canopy-covered areas decrease while areas without vegetation cover between the argan trees increase. In total, 36 rainfall simulation experiments as well as 60 infiltration measurements were conducted to investigate the potential difference between tree-covered areas and bare intertree areas. In addition, 60 soil samples were taken under the trees and in the intertree areas parallel to the contour lines. Significant differences using a t-test were found between tree and intertree areas for the studied parameters Ksat, Kh, pH, electric conductivity, percolation stability, total C-content, total N-content, K-content, Na-content, and Mg-content. Surface runoff and soil losses were not as conclusive but showed similar trends. The results showed that argan trees influence the soil underneath significantly, while the soil in intertree areas is less protected and more degraded. It is therefore reasonable to assume further degradation of the soil when intertree areas extend further due to lack of rejuvenation of argan trees.
Monitoring woody cover by remote sensing is considered a key methodology towards sustainable management of trees in dryland forests. However, while modern very high resolution satellite (VHRS) sensors allow woodland mapping at the individual tree level, the historical perspective is often hindered by lack of appropriate image data. In this first study employing the newly accessible historical HEXAGON KH-9 stereo-panoramic camera images for environmental research, we propose their use for mapping trees in open-canopy conditions. The 2–4 feet resolution panchromatic HEXAGON satellite photographs were taken 1971–1986 within the American reconnaissance programs that are better known to the scientific community for their lower-resolution CORONA images. Our aim is to evaluate the potential of combining historical CORONA and HEXAGON with recent WorldView VHRS imagery for retrospective woodland change mapping on the tree level. We mapped all trees on 30 1-ha test sites in open-canopy argan woodlands in Morocco in the field and from the VHRS imagery for estimating changes of tree density and size between 1967/1972 and 2018. Prior to image interpretation, we used simulations based on unmanned aerial system (UAS) imagery for exemplarily examining the role of illumination, viewing geometry and image resolution on the appearance of trees and their shadows in the historical panchromatic images. We show that understanding these parameters is imperative for correct detection and size-estimation of tree crowns. Our results confirm that tree maps derived solely from VHRS image analysis generally underestimate the number of small trees and trees in clumped-canopy groups. Nevertheless, HEXAGON images compare remarkably well with WorldView images and have much higher tree-mapping potential than CORONA. By classifying the trees in three sizes, we were able to measure tree-cover changes on an ordinal scale. Although we found no clear trend of forest degradation or recovery, our argan forest sites show varying patterns of change, which are further analysed in Part B of our study. We conclude that the HEXAGON stereo-panoramic camera images, of which 670,000 worldwide will soon be available, open exciting opportunities for retrospective monitoring of trees in open-canopy conditions and other woody vegetation patterns back into the 1980s and 1970s.