Refine
Year of publication
Document Type
- Preprint (102)
- Article (88)
- Doctoral Thesis (1)
- Working Paper (1)
Language
- English (192)
Has Fulltext
- yes (192)
Is part of the Bibliography
- no (192)
Keywords
- e +-e − Experiments (11)
- Particle and Resonance Production (7)
- Spectroscopy (6)
- Charm Physics (4)
- BESIII (3)
- Exotics (3)
- Quarkonium (3)
- Branching fraction (2)
- Electroweak Interaction (2)
- Born cross section measurement (1)
Institute
Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"- exposure in relation to non-"traffic zone"-exposure. Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including including NO2, SO2, nanoparticles, and ozone.
The Born cross sections of the e+e− → D*+D*− and e+e− → D*+D− processes are measured using e+e− collision data collected with the BESIII experiment at center-of-mass energies from 4.085 to 4.600 GeV, corresponding to an integrated luminosity of 15.7 fb−1. The results are consistent with and more precise than the previous measurements by the Belle, Babar and CLEO collaborations. The measurements are essential for understanding the nature of vector charmonium and charmonium-like states.
We report the first measurements of the absolute branching fractions of D0 → K0 Lϕ, D0 → K0Lη, D0 → K0Lω, and D0 → K0Lη0, by analyzing 2.93 fb−1 of eþe− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector. Taking the world averages of the branching fractions of D0 → K0Sϕ, D0 → K0Sη, D0 → K0Sω, and D0 → K0Sη0, the K0S − K0L asymmetries RðD0; XÞ in these decay modes are obtained. The CP asymmetries in these decays are also determined. No significant CP violation is observed
The Cabibbo-allowed weak radiative decay Λ+c→Σ+γ has been searched for in a sample of Λ+cΛ¯−c pairs produced in e+e− annihilations, corresponding to an integrated luminosity of 4.5fb−1 collected with the BESIII detector at center-of-mass energies between 4.60 and 4.70 GeV. No excess of signal above background is observed, and we set an upper limit on the branching fraction of this decay to be B(Λ+c→Σ+γ)<4.4×10−4 at a confidence level of 90\%, which is in agreement with Standard Model expectations.
Improved measurement of the branching fractions of the inclusive decays D⁺ → Kₛ⁰X and D⁰ → Kₛ⁰X
(2023)
By analyzing 2.93 fb−1 of 𝑒+𝑒− collision data taken at the center-of-mass energy of 3.773 GeV with the BESIII detector, the branching fractions of the inclusive decays 𝐷+→𝐾0 𝑆𝑋 and 𝐷0→𝐾0 𝑆𝑋 are measured to be (33.11±0.13±0.36)% and (20.75±0.12±0.20)%, respectively, where the first uncertainties are statistical and the second are systematic. These results are consistent with the world averages of previous measurements, but with much improved precision.
Using 7.33 fb−1 of e+e− collision data collected by the BESIII detector at center-of-mass energies between 4.128 and 4.226~GeV, we observe for the first time the decay D±s→ωπ±η with a statistical significance of 7.6σ. The measured branching fraction of this decay is (0.54±0.12±0.04)%, where the first uncertainty is statistical and the second is systematic.
Observation of resonance structures in e⁺e⁻ → π⁺π⁻ψ₂(3823) and mass measurement of ψ₂(3823)
(2022)
Using a data sample corresponding to an integrated luminosity of 11.3 fb−1 collected at center-of-mass energies from 4.23 to 4.70 GeV with the BESIII detector, we measure the product of the 𝑒+𝑒−→𝜋+𝜋−𝜓2(3823) cross section and the branching fraction ℬ[𝜓2(3823)→𝛾𝜒𝑐1]. For the first time, resonance structure is observed in the cross section line shape of 𝑒+𝑒−→𝜋+𝜋−𝜓2(3823) with significances exceeding 5𝜎. A fit to data with two coherent Breit-Wigner resonances modeling the √𝑠-dependent cross section yields 𝑀(𝑅1)=4406.9±17.2±4.5 MeV/𝑐2, Γ(𝑅1)=128.1±37.2±2.3 MeV, and 𝑀(𝑅2)=4647.9±8.6±0.8 MeV/𝑐2, Γ(𝑅2)=33.1±18.6±4.1 MeV. Though weakly disfavored by the data, a single resonance with 𝑀(𝑅)=4417.5±26.2±3.5 MeV/𝑐2, Γ(𝑅)=245±48±13 MeV is also possible to interpret data. This observation deepens our understanding of the nature of the vector charmoniumlike states. The mass of the 𝜓2(3823) state is measured as (3823.12±0.43±0.13) MeV/𝑐2, which is the most precise measurement to date.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e+e−→η+X, normalized by the total cross section of e+e−→hadrons, is measured at eight center-of-mass energy points from 2.0000 GeV to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy from calculations with the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.