• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Merkle, Johannes (2)

Year of publication

  • 1995 (1)
  • 2000 (1)

Document Type

  • diplomthesis (1)
  • Doctoral Thesis (1)

Language

  • German (2)

Has Fulltext

  • yes (2)

Is part of the Bibliography

  • no (2)

Institute

  • Mathematik (2)

2 search hits

  • 1 to 2
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Effiziente Signaturerzeugung durch Server-Unterstützung und Vorberechnung (2000)
Merkle, Johannes
Es steht außer Zweifel, daß digitale Signaturen schon bald zu unserem Alltag gehören wer- den. Spätestens mit dem Inkrafttreten des Gesetzes zur digitalen Signatur (siehe [BMB]) sind sie zu einem wichtigen Instrument in der Telekommunikation geworden. Dabei kommt der Verwendung von Chipkarten eine wichtige Bedeutung zu: In ihnen lassen sich die sensiblen Daten (z.B. der geheime Schlüssel) auslesesicher aufbewahren; gleichzeitig können sie bequem mitgeführt werden. Aus diesen Gründen erlebt die Verwendung von Chipkarten zur Erzeugung von digitalen Signaturen zur Zeit einen enormen Aufschwung. Problematisch ist jedoch der oft unverhältnismäßig große Berechnungsaufwand für die Erzeugung von digitalen Signaturen. Ziel dieser Arbeit ist es, Methoden zu entwickeln und/oder zu untersuchen, welche die Berechnung digitaler Unterschriften wesentlich beschleunigen. Dabei spiegelt sich die Zweiteilung der in der Praxis hauptsächlich verwendeten Typen von Signaturverfahren in der Struktur der Arbeit wider. Der erste Teil dieser Arbeit untersucht Verfahren zur effizienten Berechnung von RSA-Unterschriften. Dabei entstanden die Untersuchungen in den Abschnitten 3.2.3 und 3.2.4 in Zusammenarbeit mit R. Werchner und der Inhalt der Abschnitte 3.1 - 3.2.4 ist bereits in [MW98] veröffentlicht. Im zweiten Teil entwickeln wir Verfahren zur effizienteren Generierung von Unterschriften, die auf dem diskreten Logarithmus basieren, und untersuchen deren Sicherheit. Dabei entstanden die Untersuchungen in den Abschnitten 4.2 (bis auf 4.2.2) und 4.3.1 in Zusammenarbeit mit C. P. Schnorr und sind teilweise in [MS98] zusammengefaßt. Obwohl diese Arbeit eine mathematische Abhandlung darstellt, versuchen wir, die praktische Anwendung nicht aus den Augen zu verlieren. So orientieren sich die betrachteten Verfahren stets an den durch die verfügbare Technologie gegebenen Rahmenbedingungen. Darüber hinaus richten wir unser Augenmerk weniger auf das asymptotische Verhalten der betrachteten Verfahren, als vielmehr auf konkrete, für die Anwendung relevante Beispiele.
Über Schnorr's Preprocessing für diskrete Log-Unterschriften (1995)
Merkle, Johannes
Ziel dieser Arbeit war es, ein sicheres und trotzdem effizientes Preprocessing zu finden. Nach den zurückliegenden Untersuchungen können wir annehmen, dies erreicht zu haben. Wir haben gezeigt, daß eine minimale Workload von Attacken von 272 mit nur 16 Multiplikationen pro Runde und 13 gespeicherten Paaren (ri, xi) erreicht werden kann. Mit der in Abschnitt 12.3 erklärten Variation - der Wert rº k geht nicht in die Gleichungen mit ein - erreichen wir sogar eine Sicherheit von 274. In diesem Fall können wir die Anzahl der gespeicherten Paare auf 12 verringern. Auch von der in Abschnit 12.5 besprochenen Variation erwarten wir eine Erhöhung der Sicherheit. Ergebnisse dazu werden bald vorliegen. Folgender Preprocessing Algorithmus erscheint z.B. nach unserem derzeitigen Wissensstand geeignet: Setze k = 12, l0 = 7, l1 = 3, d0 = 4, d1 = 5, h = 4, ¯h = 1. Initiation: lade k Paare (r0 0, x00 ) . . . , (r0 k 1, x0 k 1) mit x0i = ®r0 i mod p. º := 1. º ist die Rundennummer 1. Wähle l1 2 verschiedene Zufallszahlen a(3, º), . . . , a(l1, º) 2 {º + 1 mod k, . . . , º 2 mod k} a(1, º) := º mod k, a(2, º) := º 1 mod k W¨ahle l1 2 verschiedene Zufallszahlen f(3, º), . . . , f(l1, º) 2 {0, . . . , d1 1}, f(1, º) zuf¨allig aus {h, . . . , d1 1} und f(2, º) zuf¨allig aus {¯h, . . . , d1 1} rº k := rº ºmodk + l1 Xi=1 2f(i,º)rº 1 a(i,º) mod q xk = xºº modk · l1 Yi=1 (xº 1 a(i,º))2f(i,º) mod p 2. w¨ahle l0 1 verschiedene Zufallszahlen b(2, º), . . . , b(l0, º) 2 {º + 1 mod k, . . . , º 1 mod k} b(1, º) := º mod k W¨ahle l0 verschiedene Zufallszahlen g(1, º), . . . , g(l0, º) 2 {0, . . . , d0 1} rº ºmodk := l0 Xi=1 2g(i,º)rº 1 b(i,º) mod q xºº modk = l0 Yi=1 (xº 1 b(i,º))2g(i,º) mod p 3. verwende (rº k, xº k) f¨ur die º te Signatur (eº, yº) gem¨aß yº = rº k + seº mod q 4. º := º + 1 GOTO 1. f¨ur die n¨achste Signatur Die Zufallszahlen a(3, º), . . . , a(l, º), b(2, º), . . . , b(l, º), f(1, º), . . . , f(l, º) und g(1, º), . . . , g(l, º) werden unabhängig gewählt. Dies ist selbstverständlich nur ein Beispiel. Unsere Untersuchungen sind noch nicht abgeschlossen. Wir glauben aber nicht, daß feste Werte a(i, º) und b(i, º) ein effizientes Preprocessing definieren. Wir haben einige Variationen mit solchen weniger randomisierten Gleichungen studiert und immer effiziente Attacken gefunden.
  • 1 to 2

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks