Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European satellite Envisat have been retrieved from versions MIPAS/4.61 to MIPAS/4.62 and MIPAS/5.02 to MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Astrofísica de Andalucía (IAA). These profiles have been compared to measurements taken by the balloon-borne cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS-STRatospheric aircraft (MIPAS-STR), the satellite-borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS), as well as the ground-based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005–April 2012) of MIPAS. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (full resolution, FR: July 2002–March 2004) and were used to validate MIPAS CFC-11 and CFC-12 products during that time, as well as profiles from the Improved Limb Atmospheric Spectrometer, ILAS-II. In general, we find that MIPAS shows slightly higher values for CFC-11 at the lower end of the profiles (below ∼ 15 km) and in a comparison of HATS ground-based data and MIPAS measurements at 3 km below the tropopause. Differences range from approximately 10 to 50 pptv ( ∼ 5–20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11 and is not as obvious in the relative differences between MIPAS and any of the comparison instruments. Differences at the lower end of the profile (below ∼ 15 km) and in the comparison of HATS and MIPAS measurements taken at 3 km below the tropopause mainly stay within 10–50 pptv (corresponding to ∼ 2–10 % for CFC-12) for the RR and the FR period. Between ∼ 15 and 30 km, most comparisons agree within 10–20 pptv (10–20 %), apart from ILAS-II, which shows large differences above ∼ 17 km. Overall, relative differences are usually smaller for CFC-12 than for CFC-11. For both species – CFC-11 and CFC-12 – we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS profiles have a maximum in their mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Comparisons of the standard deviation in a quiescent atmosphere (polar summer) show that only the CFC-12 FR error budget can fully explain the observed variability, while for the other products (CFC-11 FR and RR and CFC-12 RR) only two-thirds to three-quarters can be explained. Investigations regarding the temporal stability show very small negative drifts in MIPAS CFC-11 measurements. These instrument drifts vary between ∼ 1 and 3 % decade−1. For CFC-12, the drifts are also negative and close to zero up to ∼ 30 km. Above that altitude, larger drifts of up to ∼ 50 % decade−1 appear which are negative up to ∼ 35 km and positive, but of a similar magnitude, above.
The three-dimensional quantification of small scale processes in the upper troposphere and lower stratosphere is one of the challenges of current atmospheric research and requires the development of new measurement strategies. This work presents first results from the newly developed Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) obtained during the ESSenCe and TACTS/ESMVal aircraft campaigns. The focus of this work is on the so-called dynamics mode data characterized by a medium spectral and a very high spatial resolution. The retrieval strategy for the derivation of two- and three-dimensional constituent fields in the upper troposphere and lower stratosphere is presented. Uncertainties of the main retrieval targets (temperature, O3, HNO3 and CFC-12) and their spatial resolution are discussed. During ESSenCe, high resolution two-dimensional cross-sections have been obtained. Comparisons to collocated remote-sensing and in-situ data indicate a good agreement between the data sets. During TACTS/ESMVal a tomographic flight pattern to sense an intrusion of stratospheric air deep into the troposphere has been performed. This filament could be reconstructed with an unprecedented spatial resolution of better than 500 m vertically and 20 km × 20 km horizontally.
The three-dimensional quantification of small-scale processes in the upper troposphere and lower stratosphere is one of the challenges of current atmospheric research and requires the development of new measurement strategies. This work presents the first results from the newly developed Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) obtained during the ESSenCe (ESa Sounder Campaign) and TACTS/ESMVal (TACTS: Transport and composition in the upper troposphere/lowermost stratosphere, ESMVal: Earth System Model Validation) aircraft campaigns. The focus of this work is on the so-called dynamics-mode data characterized by a medium-spectral and a very-high-spatial resolution. The retrieval strategy for the derivation of two- and three-dimensional constituent fields in the upper troposphere and lower stratosphere is presented. Uncertainties of the main retrieval targets (temperature, O3, HNO3, and CFC-12) and their spatial resolution are discussed. During ESSenCe, high-resolution two-dimensional cross-sections have been obtained. Comparisons to collocated remote-sensing and in situ data indicate a good agreement between the data sets. During TACTS/ESMVal, a tomographic flight pattern to sense an intrusion of stratospheric air deep into the troposphere was performed. It was possible to reconstruct this filament at an unprecedented spatial resolution of better than 500 m vertically and 20 × 20 km horizontally.
We report on HCFC-22 data acquired by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in the reduced spectral resolution nominal observation mode. The data cover the period from January 2005 to April 2012 and the altitude range from the upper troposphere (above cloud top altitude) to about 50 km. The profile retrieval was performed by constrained nonlinear least squares fitting of modelled spectra to the measured limb spectral radiances. The spectral ν4-band at 816.5 ± 13 cm−1 was used for the retrieval. A Tikhonov-type smoothing constraint was applied to stabilise the retrieval. In the lower stratosphere, we find a global volume mixing ratio of HCFC-22 of about 185 pptv in January 2005. The rate of linear growth in the lower latitudes lower stratosphere was about 6 to 7 pptv year−1 in the period 2005–2012. The profiles obtained were compared with ACE-FTS satellite data v3.5, as well as with MkIV balloon profiles and cryosampler balloon measurements. Between 13 and 22 km, average agreement within −3 to +5 pptv (MIPAS – ACE) with ACE-FTS v3.5 profiles is demonstrated. Agreement with MkIV solar occultation balloon-borne measurements is within 10–20 pptv below 30 km and worse above, while in situ cryosampler balloon measurements are systematically lower over their full altitude range by 15–50 pptv below 24 km and less than 10 pptv above 28 km. MIPAS HCFC-22 time series below 10 km altitude are shown to agree mostly well to corresponding time series of near-surface abundances from the NOAA/ESRL and AGAGE networks, although a more pronounced seasonal cycle is obvious in the satellite data. This is attributed to tropopause altitude fluctuations and subsidence of polar winter stratospheric air into the troposphere. A parametric model consisting of constant, linear, quasi-biennial oscillation (QBO) and several sine and cosine terms with different periods has been fitted to the temporal variation of stratospheric HCFC-22 for all 10°-latitude/1-to-2-km-altitude bins. The relative linear variation was always positive, with relative increases of 40–70 % decade−1 in the tropics and global lower stratosphere, and up to 120 % decade−1 in the upper stratosphere of the northern polar region and the southern extratropical hemisphere. Asian HCFC-22 emissions have become the major source of global upper tropospheric HCFC-22. In the upper troposphere, monsoon air, rich in HCFC-22, is instantaneously mixed into the tropics. In the middle stratosphere, between 20 and 30 km, the observed trend is inconsistent with the trend at the surface (corrected for the age of stratospheric air), hinting at circulation changes. There exists a stronger positive trend in HCFC-22 in the Southern Hemisphere and a more muted positive trend in the Northern Hemisphere, implying a potential change in the stratospheric circulation over the observation period.
We report on HCFC-22 data acquired by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in reduced spectral resolution nominal mode in the period from January 2005 to April 2012 from version 5.02 level-1b spectral data and covering an altitude range from the upper troposphere (above cloud top altitude) to about 50 km. The profile retrieval was performed by constrained nonlinear least squares fitting of measured limb spectral radiances to modelled spectra. The spectral v4-band at 816.5 ± 13 cm-1 was used for the retrieval. A Tikhonov-type smoothing constraint was applied to stabilise the retrieval. In the lower stratosphere, we find a global volume mixing ratio of HCFC-22 of about 185 pptv in January 2005. The linear growth rate in the lower latitudes lower stratosphere was about 6 to 7 pptv yr-1 in the period 2005–2012. The obtained profiles were compared with ACE-FTS satellite data v3.5, as well as with MkIV balloon profiles and in situ cryosampler balloon measurements. Between 13 and 22 km, average agreement within -3 to +5 pptv (MIPAS–ACE) with ACE-FTS v3.5 pro files is demonstrated. Agreement with MkIV solar occultation balloon-borne measurements is within 10–20 pptv below 30 km and worse above, while in situ cryosampler balloon measurements are systematically lower over their full altitude range by 15– 50 pptv below 24 km and less than 10 pptv above 28 km. Obtained MIPAS HCFC-22 time series below 10 km altitude are shown to agree mostly well to corresponding time series of near-surface abundances from NOAA/ESRL and AGAGE networks, although a more pronounced seasonal cycle is obvious in the satellite data, probably due to tropopause altitude fluctuations and subsidence of polar winter stratospheric air into the troposphere. A parametric model consisting of constant, linear, quasi-biennial oscillation (QBO) and several sine and cosine terms with different periods has been fitted to the temporal variation of stratospheric HCFC-22 for all 10° latitude/1 to 2 km altitude bins. The relative linear variation was always positive, with relative increases of 40–70%decade-1 in the tropics and global lower stratosphere, and up to 120%decade-1 in the upper stratosphere of the northern polar region and the southern extratropical hemisphere. In the middle stratosphere between 20 and 30 km, the observed trend is not consistent with the age of stratospheric air-corrected trend at ground, but stronger positive at the Southern Hemisphere and less strong increasing in the Northern Hemisphere, hinting towards changes in the stratospheric circulation over the observation period.
Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European satellite Envisat have been retrieved from versions MIPAS/4.61 to MIPAS/4.62 and MIPAS/5.02 to MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Astrofísica de Andalucía (IAA). These profiles have been compared to measurements taken by the balloon-borne cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS-STRatospheric aircraft (MIPAS-STR), the satellite-borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS), as well as the ground-based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005–April 2012) of MIPAS. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (full resolution, FR: July 2002–March 2004) and were used to validate MIPAS CFC-11 and CFC-12 products during that time, as well as profiles from the Improved Limb Atmospheric Spectrometer, ILAS-II. In general, we find that MIPAS shows slightly higher values for CFC-11 at the lower end of the profiles (below ∼ 15 km) and in a comparison of HATS ground-based data and MIPAS measurements at 3 km below the tropopause. Differences range from approximately 10 to 50 pptv ( ∼ 5–20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11 and is not as obvious in the relative differences between MIPAS and any of the comparison instruments. Differences at the lower end of the profile (below ∼ 15 km) and in the comparison of HATS and MIPAS measurements taken at 3 km below the tropopause mainly stay within 10–50 pptv (corresponding to ∼ 2–10 % for CFC-12) for the RR and the FR period. Between ∼ 15 and 30 km, most comparisons agree within 10–20 pptv (10–20 %), apart from ILAS-II, which shows large differences above ∼ 17 km. Overall, relative differences are usually smaller for CFC-12 than for CFC-11. For both species – CFC-11 and CFC-12 – we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS profiles have a maximum in their mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Comparisons of the standard deviation in a quiescent atmosphere (polar summer) show that only the CFC-12 FR error budget can fully explain the observed variability, while for the other products (CFC-11 FR and RR and CFC-12 RR) only two-thirds to three-quarters can be explained. Investigations regarding the temporal stability show very small negative drifts in MIPAS CFC-11 measurements. These instrument drifts vary between ∼ 1 and 3 % decade−1. For CFC-12, the drifts are also negative and close to zero up to ∼ 30 km. Above that altitude, larger drifts of up to ∼ 50 % decade−1 appear which are negative up to ∼ 35 km and positive, but of a similar magnitude, above.