Refine
Document Type
- Article (3)
- Preprint (2)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Attention (1)
- Decision (1)
- Human behaviour (1)
- V4 (1)
- attention (1)
- microsaccades (1)
- monkey (1)
- neurophysiology (1)
- oscillations (1)
- rhythm (1)
Institute
When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here we show in awake macaque area V1 that both, repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects showed some persistence on the timescale of minutes. Further, gamma increases were specific to the presented stimulus location. Importantly, repetition effects on gamma and on firing rates generalized to natural images. These findings suggest that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters, both for generating efficient stimulus responses and possibly for memory formation.
Rhythmic neural spiking and attentional sampling arising from cortical receptive field interactions
(2018)
Summary: Growing evidence suggests that distributed spatial attention may invoke theta (3-9 Hz) rhythmic sampling processes. The neuronal basis of such attentional sampling is however not fully understood. Here we show using array recordings in visual cortical area V4 of two awake macaques that presenting separate visual stimuli to the excitatory center and suppressive surround of neuronal receptive fields elicits rhythmic multi-unit activity (MUA) at 3-6 Hz. This neuronal rhythm did not depend on small fixational eye movements. In the context of a distributed spatial attention task, during which the monkeys detected a spatially and temporally uncertain target, reaction times (RT) exhibited similar rhythmic fluctuations. RTs were fast or slow depending on the target occurrence during high or low MUA, resulting in rhythmic MUA-RT cross-correlations at at theta frequencies. These findings suggest that theta-rhythmic neuronal activity arises from competitive receptive field interactions and that this rhythm may subserve attentional sampling.
Highlights:
* Center-surround interactions induce theta-rhythmic MUA of visual cortex neurons
* The MUA rhythm does not depend on small fixational eye movements
* Reaction time fluctuations lock to the neuronal rhythm under distributed attention
When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here, we show in awake macaque area V1 that both repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects show some persistence on the timescale of minutes. Gamma increases are specific to the presented stimulus location. Further, repetition effects on gamma and on firing rates generalize to images of natural objects. These findings support the notion that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters.
Rhythms, i.e. periodic sequences of events or states, are a ubiquitous feature of physiological systems such as the heart, the lungs or the brain. For the brain in particular, the diversity of rhythms is remarkable, ranging from low frequency rhythms in the slow/delta band (0.5-4 Hz) during sleep to gamma band oscillations (30-120 Hz) rhythms during alert behavior, all expressed in various brain areas and at various spatial scales. To understand whether these rhythms subserve a function for the organism it is important to also understand the underlying mechanisms that generate them. While the generation of some rhythms appear to be well-understood, e.g. sleep spindles, others such as the cortical beta rhythm (13-30 Hz) have remained elusive.
Understanding the generation of a brain rhythm involves multiple spatial scales, from identifying intracellular mechanisms such as the contribution of individual transmembrane currents to studying how specific neuronal populations or areas affect the full physiological rhythm present in the intact, highly interconnected brain. The aim of this work has been to delineate the mechanistic contributions of individual brain areas to the in vivo generation of two particular rhythms present in efferent areas: (1) The first part of this work studies the influence of thalamocortical neurons on cortical slow/delta waves (0.5-4 Hz) of sleep that are sometimes also present in awake animals. (2) The second part is about the contribution of primary visual cortex to the beta rhythm (13-30 Hz) in extrastriate cortex of awake behaving animals.
Growing evidence suggests that distributed spatial attention may invoke theta (3–9 Hz) rhythmic sampling processes. The neuronal basis of such attentional sampling is, however, not fully understood. Here we show using array recordings in visual cortical area V4 of two awake macaques that presenting separate visual stimuli to the excitatory center and suppressive surround of neuronal receptive fields (RFs) elicits rhythmic multi-unit activity (MUA) at 3–6 Hz. This neuronal rhythm did not depend on small fixational eye movements. In the context of a distributed spatial attention task, during which the monkeys detected a spatially and temporally uncertain target, reaction times (RTs) exhibited similar rhythmic fluctuations. RTs were fast or slow depending on the target occurrence during high or low MUA, resulting in rhythmic MUA-RT cross-correlations at theta frequencies. These findings show that theta rhythmic neuronal activity can arise from competitive RF interactions and that this rhythm may result in rhythmic RTs potentially subserving attentional sampling.
Spatial attention allows us to make more accurate decisions about events in our environment. Decision confidence is thought to be intimately linked to the decision making process as confidence ratings are tightly coupled to decision accuracy. While both spatial attention and decision confidence have been subjected to extensive research, surprisingly little is known about the interaction between these two processes. Since attention increases performance it might be expected that confidence would also increase. However, two studies investigating the effects of endogenous attention on decision confidence found contradictory results. Here we investigated the effects of two distinct forms of spatial attention on decision confidence; endogenous attention and exogenous attention. We used an orientation-matching task, comparing the two attention conditions (endogenous and exogenous) to a control condition without directed attention. Participants performed better under both attention conditions than in the control condition. Higher confidence ratings than the control condition were found under endogenous attention but not under exogenous attention. This finding suggests that while attention can increase confidence ratings, it must be voluntarily deployed for this increase to take place. We discuss possible implications of this relative overconfidence found only during endogenous attention with respect to the theoretical background of decision confidence.