Refine
Year of publication
Document Type
- Article (28)
- Preprint (3)
- Conference Proceeding (2)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- photochemistry (5)
- photolabile protecting groups (3)
- time-resolved spectroscopy (3)
- Baird's rule (2)
- accessibility switch (2)
- excited state aromaticity (2)
- inward proton pump (2)
- microbial rhodopsin (2)
- photoisomerization (2)
- solid-state NMR (2)
Institute
- Biochemie und Chemie (19)
- Biochemie, Chemie und Pharmazie (13)
- Biowissenschaften (1)
- Physik (1)
- Präsidium (1)
Bei jeder chemischen Reaktion werden Bindungen gebrochen und andere neu geknüpft. Dabei ändert sich die Anordnung und eventuell Anzahl der Atome im Molekül. Voraussetzung hierfür sind Bewegungen der beteiligten Atome und Moleküle. Um chemische Umwandlungen in "Echtzeit" zu studieren, müssen Untersuchungen im Zeitbereich der Schwingungs- und Rotationsdynamik durchgeführt werden. Dazu nutzen Wissenschaftler des Instituts für Physikalische und Theoretische Chemie die Möglichkeiten der modernen Ultrakurzzeit-Lasertechnik.
Pflanzen, aber auch einige Bakterien und Archäen verfügen über hocheffiziente Mechanismen, Licht in Energie umzuwandeln. Photovoltaik-Zellen reichen an die Perfektion dieser natürlichen Systeme noch lange nicht heran. Deshalb versuchen Forscher, mit ultraschnellen spektroskopischen Methoden der Natur in die Karten zu schauen und von ihr zu lernen.
African trypanosomes cause a parasitic disease known as sleeping sickness. Mitochondrial transcript maturation in these organisms requires a RNA editing reaction that is characterized by the insertion and deletion of U-nucleotides into otherwise non-functional mRNAs. Editing represents an ideal target for a parasite-specific therapeutic intervention since the reaction cycle is absent in the infected host. In addition, editing relies on a macromolecular protein complex, the editosome, that only exists in the parasite. Therefore, all attempts to search for editing interfering compounds have been focused on molecules that bind to proteins of the editing machinery. However, in analogy to other RNA-driven biochemical pathways it should be possible to stall the reaction by targeting its substrate RNAs. Here we demonstrate inhibition of editing by specific aminoglycosides. The molecules bind into the major groove of the gRNA/pre-mRNA editing substrates thereby causing a stabilization of the RNA molecules through charge compensation and an increase in stacking. The data shed light on mechanistic details of the editing process and identify critical parameters for the development of new trypanocidal compounds.
The new class of microbial rhodopsins, called xenorhodopsins (XeRs),[1] extends the versatility of this family by inward H+ pumps.[2–4] These pumps are an alternative optogenetic tool to the light-gated ion channels (e.g. ChR1,2), because the activation of electrically excitable cells by XeRs is independent from the surrounding physiological conditions. In this work we functionally and spectroscopically characterized XeR from Nanosalina (NsXeR).[1] The photodynamic behavior of NsXeR was investigated on the ps to s time scale elucidating the formation of the J and K and a previously unknown long-lived intermediate. The pH dependent kinetics reveal that alkalization of the surrounding medium accelerates the photocycle and the pump turnover. In patch-clamp experiments the blue-light illumination of NsXeR in the M state shows a potential-dependent vectoriality of the photocurrent transients, suggesting a variable accessibility of reprotonation of the retinal Schiff base. Insights on the kinetically independent switching mechanism could furthermore be obtained by mutational studies on the putative intracellular H+ acceptor D220.
Thiophenylazobenzene: an alternative photoisomerization controlled by lone‐pair⋅⋅⋅π interaction
(2019)
Azoheteroarene photoswitches have attracted attention due to their unique properties. We present the stationary photochromism and ultrafast photoisomerization mechanism of thiophenylazobenzene (TphAB). It demonstrates impressive fatigue resistance and photoisomerization efficiency, and shows favorably separated (E)‐ and (Z)‐isomer absorption bands, allowing for highly selective photoconversion. The (Z)‐isomer of TphAB adopts an unusual orthogonal geometry where the thiophenyl group is perfectly perpendicular to the phenyl group. This geometry is stabilized by a rare lone‐pair⋅⋅⋅π interaction between the S atom and the phenyl group. The photoisomerization of TphAB occurs on the sub‐ps to ps timescale and is governed by this interaction. Therefore, the adoption and disruption of the orthogonal geometry requires significant movement along the inversion reaction coordinates (CNN and NNC angles). Our results establish TphAB as an excellent photoswitch with versatile properties that expand the application possibilities of AB derivatives.
A small single molecule with multiple photoswitchable subunits, selectively and independently controllable by light of different wavelengths, is highly attractive for applications in multi-responsive materials and biological sciences. Herein, triple photoswitches are presented consisting of three independent azobenzene (AB) subunits that share a common central phenyl ring: the meta-trisazobenzenes (MTA). It is the unique meta-connectivity pattern leading to decoupling of all azo-subunits although they do overlap spatially. Based on this pattern, we design a triple MTA photoswitch, as proof-of-principle, with three different, electronically independent AB branches on the computer, which can be individually photo-excited to trigger ultra-fast E → Z isomerization at the selected AB branch.
The new class of microbial rhodopsins, called xenorhodopsins (XeRs),[1] extends the versatility of this family by inward H+ pumps.[2–4] These pumps are an alternative optogenetic tool to the light-gated ion channels (e.g. ChR1,2), because the activation of electrically excitable cells by XeRs is independent from the surrounding physiological conditions. In this work we functionally and spectroscopically characterized XeR from Nanosalina (NsXeR).[1] The photodynamic behavior of NsXeR was investigated on the ps to s time scale elucidating the formation of the J and K and a previously unknown long-lived intermediate. The pH dependent kinetics reveal that alkalization of the surrounding medium accelerates the photocycle and the pump turnover. In patch-clamp experiments the blue-light illumination of NsXeR in the M state shows a potential-dependent vectoriality of the photocurrent transients, suggesting a variable accessibility of reprotonation of the retinal Schiff base. Insights on the kinetically independent switching mechanism could furthermore be obtained by mutational studies on the putative intracellular H+ acceptor D220.
Photoresponsive hydrogels can be employed to coordinate the organization of proteins in three dimensions (3D) and thus to spatiotemporally control their physiochemical properties by light. However, reversible and user-defined tethering of proteins and protein complexes to biomaterials pose a considerable challenge as this is a cumbersome process, which, in many cases, does not support the precise localization of biomolecules in the z direction. Here, we report on the 3D patterning of proteins with polyhistidine tags based on in-situ two-photon lithography. By exploiting a two-photon activatable multivalent chelator head, we established the protein mounting of hydrogels with micrometer precision. In the presence of photosensitizers, a substantially enhanced two-photon activation of the developed tool inside hydrogels was detected, enabling the user-defined 3D protein immobilization in hydrogels with high specificity, micrometer-scale precision, and under mild light doses. Our protein-binding strategy allows the patterning of a wide variety of proteins and offers the possibility to dynamically modify the biofunctional properties of materials at defined subvolumes in 3D.