Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
- Medizin (3)
- Georg-Speyer-Haus (2)
- Pharmazie (2)
- Biowissenschaften (1)
Die Bildung aller Blutzellen ist ein vielschichtiger Prozess aus Proliferation und Differenzierung der pluripotenten Stammzellen. Die Regulation der hämatopoietischen Differenzierung wird unter anderem durch ein Zusammenspiel von zelltypspezifischen Transkriptionsfaktoren gewährleistet (Barreda & Belosevic, 2001). Der Transkriptionsfaktor RUNX1 spielt eine wichtige Rolle bei der Entwicklung von hämatopoietischen Stammzellen und eine funktionelle Veränderung von RUNX1 führt zur Ausbildung von Leukämien. In humanen Leukämien ist RUNX1 ein häufiges Ziel von chromosomalen Translokationen. Außerdem ist die Haploinsuffizienz von RUNX1 beim Menschen ursächlich für familiäre Thrombozytopenien (FPD) mit reduzierten Thrombozytenzahlen (Luddy et al., 1978; Gerrard et al., 1991). Ein knock out von RUNX1 in adulten Mäusen zu einem Defekt in der Megakaryozytendifferenzierung und zu Myelodysplasien (Growney et al., 2005; Ichikawa et al., 2004). Die Funktion von RUNX1 wird unter anderem durch die Interaktion mit anderen Transkriptionsfaktoren und Cofaktoren reguliert. Dabei kann RUNX1 die Expression von Zielgenen aktivieren oder reprimieren, abhängig davon welche Cofaktoren rekrutiert werden. Die Rekrutierung von Chromatin-modifizierenden Cofaktoren durch RUNX1 führt zur Veränderung der Chromatinstruktur und leitet epigenetische Regulationsprozesse ein. Bekannte Histon-modifizierende Interaktionspartner von RUNX1 sind p300 und HDAC1. p300 besitzt Histon-Aceyltransferase-Aktivität und führt zur Ausbildung offener Chromatinstrukturen, welche dann Transkriptionsfaktoren erlaubt an die DNA zu binden und somit zur Aktivierung der Expression von Zielgenen beiträgt (Vogelauer et al., 2000). Der Gegenspieler von Acetyltransferasen sind Histon Deacetylasen (z.B. HDAC1), welche Acetylgruppen entfernen und somit reprimierend auf die Genexpression wirken (Berger, 2007). Bestimmte Zelltypen unterscheiden sich stark voneinander trotz eines gemeinsamen genetischen Codes. Die Expression von zelllinienspezifischen Genen muss daher zelltypspezifisch kontrolliert werden. Dies geschieht durch epigenetische Regulationsvorgänge, welche stammzell-spezifische Gene abschalten, wohingegen zelllinienspezifische Gene angeschaltet werden. Neben der Acetylierung von Histonen ist die Methylierung eine häufige posttranslationale Modifikation, die im Histone Code eine wichtige Rolle spielt. Diese Histonmarkierung wird von Methyltransferasen katalysiert. Die epigenetische Regulation von RUNX1-Zielgenen während der Differenzierung von Vorläufer-/Stammzellen wurde bislang noch nicht näher aufgeklärt. Aus diesem Grund sollten neue Interaktionspartner von RUNX1 mit epigenetischer Funktion identifiziert werden. In dieser Arbeit konnte eine Interaktion von RUNX1 mit der Protein Arginin Methyltransferase 6 (PRMT6) gezeigt werden. Expressionsanalysen wiesen eine Expression von RUNX1 und PRMT6 in Stamm-/Vorläuferzellen nach. Während der Megakaryozytendifferenzierung verhielt sich das Expressionsmuster von PRMT6 gegensätzlich zu der RUNX1-Expression. Zur Überprüfung der Auswirkung von PRMT6 auf die Megakaryozytendifferenzierung, wurden ein knock down sowie eine Überexpression von PRMT6 durchgeführt. Die veränderte CD41-Expression einer Beeinflussung des PRMT6-Levels deutet auf einen reprimierenden Effekt von PRMT6 auf die Megakaryopoiese hin. Das daran anschließende Ziel bestand in dem Nachweis der kooperativen Regulation von differenzierungsspezifischen Genen durch PRMT6 und RUNX1. PRMT6 konnte als Teil eines RUNX1-Corepressorkomplexes mit Sin3a und HDAC1 auf dem Promotorbereich von RUNX1-Zielgenen in hämatopoietischen Vorläuferzellen nachgewiesen werden. Ein in vitro Methyltransferaseassay lieferte Hinweise darauf, dass RUNX1 am Arginin 307 von PRMT6 methyliert wird, was zu einer verstärkten Interaktion beider Faktoren, einer verminderten Aktivierungsfähigkeit und einer erhöhten DNA-Bindungskapazität von RUNX1 führt. Außerdem konnte eine Methylierung des H3R2 am Promotor von megakaryozytären Genen durch PRMT6 gezeigt werden, welche die Bindung des WDR5/MLL-Komplexes an die H3K4me2 Markierung verhindert und somit eine Trimethylierung von H3K4 inhibiert (Hyllus et al., 2007). Auf dem Promotorbereich ist neben den reprimierenden Histonmodifikationen H3R2me2 und H3K27me3 die aktivierende H3K4me2+/me3-Histonmodifikation, sowie die initiierende RNA-Polymerase II vorhanden. Die Gene befinden sich in einem Zwischenzustand (intermediary state) und werden basal transkribiert. Während der Differenzierung in Richtung Megakaryozyten konnte ein Austausch des Corepressorkomplexes gegen einen Coaktivatorkomplex mit p300, PCAF, WDR5, PRMT1 und GATA1/FOG1 beobachtet werden. Ein Verlust von PRMT6 führte zu einer Verringerung der H3R2me2 Markierung. Dadurch konnte WDR5 an den Promotor binden und die H3K4-Trimethylierung wurde durch den WDR5/MLL-Komplex katalysiert. Zusätzlich konnte eine Acetylierung des Promotorbereiches und die Belegung des Promotorbereiches mit der elongierenden RNA-Polymerase II, phosphoryliert am Serin 2, nachgewiesen werden, was zur Induktion der Expression der megakaryozytären Gene führte. Zusammenfassend konnte PRMT6 als neuer Interaktionspartner von RUNX1 identifiziert werden, welcher durch die H3R2-Methylierung differenzierungsspezifische Gene in einem Zwischenzustand hält und reprimierend auf die Megakaryozytendifferenzierung wirkt. Die Expression der intermediary state Gene kann während der Differenzierung schnell aktiviert werden. Zusätzlich konnte eine Methylierung von RUNX1 durch PRMT6 gezeigt werden.
The transcription factor Tal1 is a critical activator or repressor of gene expression in hematopoiesis and leukaemia. The mechanism by which Tal1 differentially influences transcription of distinct genes is not fully understood. Here we show that Tal1 interacts with the peptidylarginine deiminase IV (PADI4). We demonstrate that PADI4 can act as an epigenetic coactivator through influencing H3R2me2a. At the Tal1/PADI4 target gene IL6ST the repressive H3R2me2a mark triggered by PRMT6 is counteracted by PADI4, which augments the active H3K4me3 mark and thus increases IL6ST expression. In contrast, at the CTCF promoter PADI4 acts as a repressor. We propose that the influence of PADI4 on IL6ST transcription plays a role in the control of IL6ST expression during lineage differentiation of hematopoietic stem/progenitor cells. These results open the possibility to pharmacologically influence Tal1 in leukaemia.
MiR144/451 expression is repressed by RUNX1 during megakaryopoiesis and disturbed by RUNX1/ETO
(2016)
Abstract: A network of lineage-specific transcription factors and microRNAs tightly regulates differentiation of hematopoietic stem cells along the distinct lineages. Deregulation of this regulatory network contributes to impaired lineage fidelity and leukemogenesis. We found that the hematopoietic master regulator RUNX1 controls the expression of certain microRNAs, of importance during erythroid/megakaryocytic differentiation. In particular, we show that the erythorid miR144/451 cluster is epigenetically repressed by RUNX1 during megakaryopoiesis. Furthermore, the leukemogenic RUNX1/ETO fusion protein transcriptionally represses the miR144/451 pre-microRNA. Thus RUNX1/ETO contributes to increased expression of miR451 target genes and interferes with normal gene expression during differentiation. Furthermore, we observed that inhibition of RUNX1/ETO in Kasumi1 cells and in RUNX1/ETO positive primary acute myeloid leukemia patient samples leads to up-regulation of miR144/451. RUNX1 thus emerges as a key regulator of a microRNA network, driving differentiation at the megakaryocytic/erythroid branching point. The network is disturbed by the leukemogenic RUNX1/ETO fusion product.
Author Summary: The regulatory network between transcription factors, epigenetic cofactors and microRNAs is decisive for normal hematopoiesis. The transcription factor RUNX1 is important for the establishment of a megakaryocytic gene expression program and the concomitant repression of erythroid genes during megakaryocytic differentiation. Gene regulation by RUNX1 is frequently disturbed by mutations and chromosomal translocations, such as the t(8;21) translocation, which gives rise to the leukemogenic RUNX1/ETO fusion protein. We found that RUNX1 regulates microRNAs, which are of importance at the megakaryocytic/erythroid branching point. Specifically, RUNX1 down-regulates expression of the microRNA cluster miR144/451 during megakaryocytic differentiation by changing the epigenetic histone modification pattern at the locus. We could show that miR451, one of the micorRNAs of the miR144/451 cluster, supports erythroid differentiation. We found that expression of miR451 is repressed by the RUNX1/ETO fusion protein, resulting in up regulation of miR451 target genes. Our data support the notion that RUNX1 suppresses the erythroid gene expression program including the erythroid microRNA miR451 and that the RUNX1/ETO fusion protein interferes with normal gene regulation by RUNX1.
Hematopoietic differentiation is driven by transcription factors, which orchestrate a finely tuned transcriptional network. At bipotential branching points lineage decisions are made, where key transcription factors initiate cell type-specific gene expression programs. These programs are stabilized by the epigenetic activity of recruited chromatin-modifying cofactors. An example is the association of the transcription factor RUNX1 with protein arginine methyltransferase 6 (PRMT6) at the megakaryocytic/erythroid bifurcation. However, little is known about the specific influence of PRMT6 on this important branching point. Here, we show that PRMT6 inhibits erythroid gene expression during megakaryopoiesis of primary human CD34+ progenitor cells. PRMT6 is recruited to erythroid genes, such as glycophorin A. Consequently, a repressive histone modification pattern with high H3R2me2a and low H3K4me3 is established. Importantly, inhibition of PRMT6 by shRNA or small molecule inhibitors leads to upregulation of erythroid genes and promotes erythropoiesis. Our data reveal that PRMT6 plays a role in the control of erythroid/megakaryocytic differentiation and open up the possibility that manipulation of PRMT6 activity could facilitate enhanced erythropoiesis for therapeutic use.