Refine
Document Type
- Article (8)
- Doctoral Thesis (1)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- working memory (4)
- ADHD (3)
- Depression (2)
- attention (2)
- encoding (2)
- maintenance (2)
- Affect (1)
- Ambulatory Assessment (1)
- Arbeitsgedächtnis (1)
- Attention (1)
Institute
Visual working memory (WM) and selective attention are fundamental cognitive mechanisms, both operating at the interface between perception and action. They are related because both are postulated to have limits with respect to how much information can be processed. Specifically, selective attention has been implicated as a limiting factor for the storage capacity of visual WM. However, visual WM and attention have been largely studied in isolation and interactions between the two have rarely been addressed. This dissertation aimed at investigating interactions between selective attention and the encoding of information into visual WM in the context of one common characteristic feature, namely their limitation in capacity. An experimental task was used that combined visual search with delayed discrimination and the demands on selective attention and WM encoding were manipulated orthogonally. In each trial participants were presented with a search array consisting of nine different grey geometric shapes. A small L-shaped item that appeared in one of four different orientations and that was coloured either blue or red was placed in the centre of each shape. Participants were instructed to search for predefined target items (Ls oriented 90°) and to memorise the shapes associated with these target items. After a delay phase a probe was presented and participants decided whether it did or did not match one of the memorised shapes. Attentional demand was manipulated by changing the search efficiency in the visual search component of the task (easy vs. difficult search) and WM load was manipulated by the number of targets (1 to 5). A behavioural study was conducted to isolate the processes that allowed participants to successfully encode complex shapes into WM while engaging spatial attention for a visual search task. The data provided evidence for a two-step encoding strategy. In the first step participants selected and memorised only the locations of all target items and only then they encoded the associated shapes at a later step. This strategy allowed them to cope with the interference between WM and attention that would otherwise take place. In the second part of this dissertation interference between visual attention and the encoding into visual WM was investigated on the level of neural activation using functional magnetic resonance imaging (fMRI). Specifically, the hypothesis was tested that the capacity limitation of visual WM is due to common limited-capacity neural resources shared by visual WM and attention. Two separate fMRI experiments were conducted that combined visual search and delayed visual discrimination for either objects (experiment 1) or locations (experiment 2). The results revealed overlapping activation for attention-demanding visual search and object WM encoding in distributed posterior and frontal regions. In the right prefrontal cortex and bilateral insula BOLD activation additively increased with increased WM load and attentional demand. Conversely, the analysis revealed an interaction effect in several visual, parietal, and premotor areas. These regions showed overlapping activation for the two task components and were severely reduced in their WM load response under the condition with high attentional demand. This interaction effect was found in similar frontal and posterior regions when combining visual search and spatial WM encoding in experiment 2. In contrast, regions in the prefrontal cortex were selectively responsive to WM load and differed to some degree depending on the WM domain. Here, activation associated with increased WM load was delayed rather than reduced under high attentional demand. The fMRI results provide convergent evidence that visual selective attention and the encoding of information into WM share, to a high degree, common neural resources. The findings indicate that competition for resources shared by visual attention and WM encoding can limit processing capabilities in distributed posterior brain regions but not the prefrontal cortex. The findings support the view that WM evolves from the recruitement of attentional mechanisms (Cowan, 2001; Wheeler und Treisman, 2002) the very same that act upon perceptual representations as well (Slotnick, 2004; Jonides et al., 2005; Pasternak and Greenlee, 2005; Postle, 2006; Ranganath, 2006). The similarity in the effects of interference between attention and the encoding of objects or locations into WM indicates that the attention-based model of WM encoding is valid across different WM domains. The capacity of visual WM can be limited at various stages of processing. The behavioural and fMRI data presented in this dissertation illustrate that one major bottleneck of information processing arises from the common demands on neural and cognitive resources shared between visual WM and selective attention during the encoding stage.
Visual selective attention and visual working memory (WM) share the same capacity-limited resources. We investigated whether and how participants can cope with a task in which these 2 mechanisms interfere. The task required participants to scan an array of 9 objects in order to select the target locations and to encode the items presented at these locations into WM (1 to 5 shapes). Determination of the target locations required either few attentional resources (“popout condition”) or an attention-demanding serial search (“non pop-out condition”). Participants were able to achieve high memory performance in all stimulation conditions but, in the non popout conditions, this came at the cost of additional processing time. Both empirical evidence and subjective reports suggest that participants invested the additional time in memorizing the locations of all target objects prior to the encoding of their shapes into WM. Thus, they seemed to be unable to interleave the steps of search with those of encoding. We propose that the memory for target locations substitutes for perceptual pop-out and thus may be the key component that allows for flexible coping with the common processing limitations of visual WM and attention. The findings have implications for understanding how we cope with real-life situations in which the demands on visual attention and WM occur simultaneously. Keywords: attention, working memory, interference, encoding strategies
Background: The risk for major depression and obesity is increased in adolescents and adults with attention-deficit / hyperactivity disorder (ADHD) and adolescent ADHD predicts adult depression and obesity. Non-pharmacological interventions to treat and prevent these co-morbidities are urgently needed. Bright light therapy (BLT) improves day–night rhythm and is an emerging therapy for major depression. Exercise intervention (EI) reduces obesity and improves depressive symptoms. To date, no randomized controlled trial (RCT) has been performed to establish feasibility and efficacy of these interventions targeting the prevention of co-morbid depression and obesity in ADHD. We hypothesize that the two manualized interventions in combination with mobile health-based monitoring and reinforcement will result in less depressive symptoms and obesity compared to treatment as usual in adolescents and young adults with ADHD.
Methods: This trial is a prospective, pilot phase-IIa, parallel-group RCT with three arms (two add-on treatment groups [BLT, EI] and one treatment as usual [TAU] control group). The primary outcome variable is change in the Inventory of Depressive Symptomatology total score (observer-blinded assessment) between baseline and ten weeks of intervention. This variable is analyzed with a mixed model for repeated measures approach investigating the treatment effect with respect to all three groups. A total of 330 participants with ADHD, aged 14 – < 30 years, will be screened at the four study centers. To establish effect sizes, the sample size was planned at the liberal significance level of α = 0.10 (two-sided) and the power of 1-β = 80% in order to find medium effects. Secondary outcomes measures including change in obesity, ADHD symptoms, general psychopathology, health-related quality of life, neurocognitive function, chronotype, and physical fitness are explored after the end of the intervention and at the 12-week follow-up.
Discussion: This is the first pilot RCT on the use of BLT and EI in combination with mobile health-based monitoring and reinforcement targeting the prevention of co-morbid depression and obesity in adolescents and young adults with ADHD. If at least medium effects can be established with regard to the prevention of depressive symptoms and obesity, a larger scale confirmatory phase-III trial may be warranted.
Trial registration: German Clinical Trials Register, DRKS00011666. Registered on 9 February 2017. ClinicalTrials.gov, NCT03371810. Registered on 13 December 2017.
Depressive symptoms in youth with ADHD: the role of impairments in cognitive emotion regulation
(2022)
Youth with attention-deficit/hyperactivity disorder (ADHD) are at increased risk to develop co-morbid depression. Identifying factors that contribute to depression risk may allow early intervention and prevention. Poor emotion regulation, which is common in adolescents, is a candidate risk factor. Impaired cognitive emotion regulation is a fundamental characteristic of depression and depression risk in the general population. However, little is known about cognitive emotion regulation in youth with ADHD and its link to depression and depression risk. Using explicit and implicit measures, this study assessed cognitive emotion regulation in youth with ADHD (N = 40) compared to demographically matched healthy controls (N = 40) and determined the association with depressive symptomatology. As explicit measure, we assessed the use of cognitive emotion regulation strategies via self-report. As implicit measure, performance in an ambiguous cue-conditioning task was assessed as indicator of affective bias in the processing of information. Compared to controls, patients reported more frequent use of maladaptive (i.e., self-blame, catastrophizing, and rumination) and less frequent use of adaptive (i.e., positive reappraisal) emotion regulation strategies. This pattern was associated with the severity of current depressive symptoms in patients. In the implicit measure of cognitive bias, there was no significant difference in response of patients and controls and no association with depression. Our findings point to depression-related alterations in the use of cognitive emotion regulation strategies in youth with ADHD. The study suggests those alterations as a candidate risk factor for ADHD-depression comorbidity that may be used for risk assessment and prevention strategies.
Even though extensively investigated, the nature of working memory (WM) deficits in patients with schizophrenia (PSZ) is not yet fully understood. In particular, the contribution of different WM sub-processes to the severe WM deficit observed in PSZ is a matter of debate. So far, most research has focused on impaired WM maintenance. By analyzing different types of errors in a spatial delayed response task (DRT), we have recently demonstrated that incorrect yet confident responses (which we labeled as false memory errors) rather than incorrect/not-confident responses reflect failures of WM encoding, which was also impaired in PSZ. In the present study, we provide further evidence for a functional dissociation between confident and not-confident errors by manipulating the demands on WM maintenance, i.e., the length over which information has to be maintained in WM. Furthermore, we investigate whether these functionally distinguishable WM processes are impaired in PSZ. Twenty-four PSZ and 24 demographically matched healthy controls (HC) performed a spatial DRT in which the length of the delay period was varied between 1, 2, 4, and 6 s. In each trial, participants also rated their level of response confidence. Across both groups, longer delays led to increased rates of incorrect/not-confident responses, while incorrect/confident responses were not affected by delay length. This functional dissociation provides additional support for our proposal that false memory errors (i.e., confident errors) reflect problems at the level of WM encoding, while not-confident errors reflect failures of WM maintenance. Schizophrenic patients showed increased numbers of both confident and not-confident errors, suggesting that both sub-processes of WM—encoding and maintenance—are impaired in schizophrenia. Combined with the delay length-dependent functional dissociation, we propose that these impairments in schizophrenic patients are functionally distinguishable.
Working memory (WM) performance varies substantially among individuals but the precise contribution of different WM component processes to these functional limits remains unclear. By analyzing different types of responses in a spatial WM task, we recently demonstrated a functional dissociation between confident and not-confident errors reflecting failures of WM encoding and maintenance, respectively. Here, we use event-related brain potentials to further explore this dissociation. Healthy participants performed a delayed orientation-discrimination task and rated their response confidence for each trial. The encoding-related N2pc component was significantly reduced for confident errors compared to confident correct responses, which is indicative of an encoding failure. In contrast, the maintenance-related contra-lateral delay activity was similar for these response types indicating that in confident error trials, WM representations – potentially the wrong ones – were maintained accurately and with stability throughout the delay interval. However, contra-lateral delay activity measured during the early part of the delay period was decreased for not-confident errors, potentially reflecting compromised maintenance processes. These electrophysiological findings contribute to a refined understanding of the encoding and maintenance processes that contribute to limitations in WM performance and capacity.
Beyond well-established difficulties with working memory in individuals with attention deficit hyperactivity disorder (ADHD), evidence is emerging that other memory processes may also be affected. We investigated, first, which memory processes show differences in adults and adolescents with ADHD in comparison to control participants, focusing on working and short-term memory, initial learning, interference, delayed and recognition memory. Second, we investigated whether ADHD severity, co-occurring depressive symptoms, IQ and physical fitness are associated with the memory performance in the individuals with ADHD.
We assessed 205 participants with ADHD (mean age 25.8 years, SD 7.99) and 50 control participants (mean age 21.1 years, SD 5.07) on cognitive tasks including the digit span forward (DSF) and backward (DSB), the Rey Auditory Verbal Learning Test (RAVLT), and the vocabulary and matrix reasoning subtests of the Wechsler Abbreviated Scale of Intelligence. Participants with ADHD were additionally assessed on ADHD severity, depression symptoms and cardiorespiratory fitness. A series of regressions were run, with sensitivity analyses performed when variables were skewed.
ADHD-control comparisons were significant for DSF, DSB, delayed and recognition memory, with people with ADHD performing less well than the control participants. The result for recognition memory was no longer significant in sensitivity analysis. Memory performance was not associated with greater ADHD or depression symptoms severity. IQ was positively associated with all memory variables except DSF. Cardiorespiratory fitness was negatively associated with the majority of RAVLT variables.
Individuals with ADHD showed difficulties with working memory, short-term memory and delayed memory, as well as a potential difficulty with recognition memory, despite preserved initial learning.
Transdiagnostic comparison of visual working memory capacity in bipolar disorder and schizophrenia
(2021)
Background: Impaired working memory is a core cognitive deficit in both bipolar disorder and schizophrenia. Its study might yield crucial insights into the underpinnings of both disorders on the cognitive and neurophysiological level. Visual working memory capacity is a particularly promising construct for such translational studies. However, it has not yet been investigated across the full spectrum of both disorders. The aim of our study was to compare the degree of reductions of visual working memory capacity in patients with bipolar disorder (PBD) and patients with schizophrenia (PSZ) using a paradigm well established in cognitive neuroscience.
Methods: 62 PBD, 64 PSZ, and 70 healthy controls (HC) completed a canonical visual change detection task. Participants had to encode the color of four circles and indicate after a short delay whether the color of one of the circles had changed or not. We estimated working memory capacity using Pashler’s K.
Results: Working memory capacity was significantly reduced in both PBD and PSZ compared to HC. We observed a small effect size (r = .202) for the difference between HC and PBD and a medium effect size (r = .370) for the difference between HC and PSZ. Working memory capacity in PSZ was also significantly reduced compared to PBD with a small effect size (r = .201). Thus, PBD showed an intermediate level of impairment.
Conclusions: These findings provide evidence for a gradient of reduced working memory capacity in bipolar disorder and schizophrenia, with PSZ showing the strongest degree of impairment. This underscores the importance of disturbed information processing for both bipolar disorder and schizophrenia. Our results are compatible with the cognitive manifestation of a neurodevelopmental gradient affecting bipolar disorder to a lesser degree than schizophrenia. They also highlight the relevance of visual working memory capacity for the development of both behavior- and brain-based transdiagnostic biomarkers.
Exercise interventions in mental disorders have evidenced a mood-enhancing effect. However, the association between physical activity and affect in everyday life has not been investigated in adult individuals with ADHD, despite being important features of this disorder. As physical activity and affect are dynamic processes in nature, assessing those in everyday life with e-diaries and wearables, has become the gold standard. Thus, we used an mHealth approach to prospectively assess physical activity and affect processes in individuals with ADHD and controls aged 14–45 years. Participants wore accelerometers across a four-day period and reported their affect via e-diaries twelve times daily. We used multilevel models to identify the within-subject effects of physical activity on positive and negative affect. We split our sample into three groups: 1. individuals with ADHD who were predominantly inattentive (n = 48), 2. individuals with ADHD having a combined presentation (i.e., being inattentive and hyperactive; n = 95), and 3. controls (n = 42). Our analyses revealed a significant cross-level interaction (F(2, 135.072)=5.733, p = 0.004) of physical activity and group on positive affect. In details, all groups showed a positive association between physical activity and positive affect. Individuals with a combined presentation significantly showed the steepest slope of physical activity on positive affect (slope_inattentive=0.005, p<0.001; slope_combined=0.009, p<0.001; slope_controls=0.004, p = 0.008). Our analyses on negative affect revealed a negative association only in the individuals with a combined presentation (slope=-0.003; p = 0.001). Whether this specifically pronounced association in individuals being more hyperactive might be a mechanism reinforcing hyperactivity needs to be empirically clarified in future studies.