Refine
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
- Physik (6)
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
The parities of eleven J=1 levels in 208Pb were determined by nuclear resonance fluorescence scattering of linearly polarized photons. A new 1+ level at Ex=5.846 MeV with Gamma 02 / Gamma =1.2±0.4 eV was found. This level can probably be identified with the theoretically predicted isoscalar 1+ state in 208Pb. All other bound dipole states below 7 MeV with Gamma 02 / Gamma >1.5 eV have negative parity. The 1- assignment to the 4.842-MeV level is of special significance because of previous conflicting results about its parity.
The 16O ( gamma ,p0) reaction has been studied with linearly polarized bremsstrahlung photons in and below the giant E1 resonance. The parity of the absorbed radiation was determined from the observed azimuthal asymmetry of the emitted protons. Combined with unpolarized measurements the polarized results determine the proton decay amplitudes of the M1 resonance at Ex=16.2 MeV in 16O. The shape of the unpolarized 16O ( gamma ,p3) angular distribution in the giant E1 resonance was derived from the measured analyzing power. NUCLEAR REACTIONS 16O( gamma ,p), E=15-25 MeV; measured analyzing power theta =90° linearly polarized bremsstrahlung; 16O dipole levels deduced pi ; 16.2 MeV 1+ resonance deduced p0 decay amplitudes; 16O GEDR deduced p3 angular distribution.
Nuclear resonance fluorescence experiments with linearly polarized bremsstrahlung were performed to determine parities of strong dipole transitions in 40Ar. A total of 14 transitions—ten of them previously unknown—in the energy range from 4.7 to 10.2 MeV could be identified. From this experiment it is evident that the main dipole strength to bound states is due to E1 excitations. An upper limit of B(M1) [up arrow] <0.5 µN2 was found for individual magnetic dipole excitations in 40Ar in the energy region below neutron threshold.
11 262 keV 1+ state in 20Ne
(1983)
The excitation energy of the lowest 1+, T=1 state in 20Ne, which is important for parity nonconservation studies, has been determined in a photon scattering experiment to be 11 262.3 ± 1.9 keV. Values for the gamma -ray branching of this level to the ground state and to the first 2+ level in 20Ne are 84 ± 5% and 16 ± 5%, respectively. NUCLEAR REACTIONS 20Ne( gamma , gamma ), E gamma <18 MeV, bremsstrahlung; measured E gamma , gamma branching. Ne natural targets.