• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Bharti, Kapil (1)

Year of publication

  • 2003 (1)

Document Type

  • Doctoral Thesis (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Keywords

  • Tomate ; Hitzestress ; Transkriptionsfaktor (1)

Institute

  • Biowissenschaften (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP (2003)
Bharti, Kapil
In contrast to the class A heat stress transcription factors (Hsfs) of plants, a considerable number of Hsfs assigned to classes B and C have no evident function as transcription activators on their own. In the course of my PhD work I showed that tomato HsfB1, a heat stress induced member of class B Hsf family, is a novel type of transcriptional coactivator in plants. Together with class A Hsfs, e.g. tomato HsfA1, it plays an important role in efficient transcrition initiation during heat stress by forming a type of enhanceosome on fragments of Hsp promoter. Characterization of promoter architecture of hsp promoters led to the identification of novel, complex heat stress element (HSE) clusters, which are required for optimal synergistic interactions of HsfA1 and HsfB1. In addition, HsfB1 showed synergistic activation of the expression of a subset of viral and house keeping promoters. CaMV35S promoter, the most widely expressed constitutive promoter turned out to be the the most interesting candidate to study this effect in detail. Because, for most house-keeping promoters tested during this study, the activators responsible for constitutive expression are not known, but in case of CaMV35S promoter they are quite well known (the bZip proteins, TGA1/2). These proteins belong to the acidic activators, similar to class A Hsfs. Actually, on heat stress inducible promoters HsfA1 or other class A Hsfs are the synergistic partners of HsfB1, whereas on house-keeping or viral promoters, HsfB1 shows synergistic transcriptional activation in cooperation with the promoter specific acidic activators, e.g. with TGA proteins on 35S promoter. In agreement with this the binding sites for HsfB1 were identified in both house-keeping and 35S promoter. It has been suggested during this study that HsfB1 acts in the maintenance of transcription of a sub-set of house-keeping and viral genes during heat stress. The coactivator function of HsfB1 depends on a single lysine residue in the GRGK motif in its CTD. Since, this motif is highly conserved among histones as the acetylation motif, especially in histones H2A and H4,. It was suggested that the GRGK motif acts as a recruitment motif, and together with the other acidic activator is responsible for corecruitment of a histone acetyl transferase (HAT). So, the effect of mammalian CBP (a well known HAT) and its plant orthologs (HAC1) was tested on the stimulation of synergistic reporter gene activation obtained with HsfA1 and HsfB1. Both in plant and mammalian cells, CBP/HAC1 further stimulated the HsfA1/B1 synergistic effect. Corecruitment of HAC1 was proven by in vitro pull down assays, where the NTD of HAC1 interacted specifically both with HsfA1 and HsfB1. Formation of a ternary complex between HsfA1, HsfB1 and CBP/HAC1 was shown via coimmunoprecipitation and electrophoretic mobility shift assays (EMSA). In conclusion, the work presented in my thesis presents a new model for transcriptional regulation during an ongoing heat stress.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks