Refine
Document Type
- Diploma Thesis (1)
- Doctoral Thesis (1)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Cluster (1)
- Photoionisation (1)
- Photoionization (1)
- Rückstoßimpulsspektroskopie (1)
- recoil ion momentum spectroscopy (1)
Institute
- Physik (2)
In der vorliegenden Arbeit wurde die 1s Photoionisation von Neondimeren mit einer Photonenenergie von 10 eV über der 1s Schwelle von Neon durchgeführt. Das Ziel dieser Messung war die Beantwortung der seit vielen Jahren diskutierten Frage nach der Lokalisierung oder Delokalisierung von Vakanzen in homonuklearen diatomaren Systemen am Beispiel des Neondimers. Können die Vakanzen also einem Atom des Dimers zugeordnet werden oder sind sie über beide Atome verteilt? Bezüglich dieser Frage wurden sowohl die in der Photoionisation direkt entstandenen 1s Vakanzen als auch die aus der Relaxation durch einen interatomic Coulombic decay (ICD) resultierenden Vakanzen in der Valenzschale des Neondimers untersucht. Als Observable dienten dabei die Elektronen-Winkelverteilungen im dimerfesten Koordinatensystem, wobei eine bezüglich der ‘rechten’ und der ‘linken’ Seite des homonuklearen diatomaren Moleküls auftretende Asymmetrie in der Winkelverteilung eindeutig eine Lokalisierung der Vakanz indiziert. Dies lässt sich damit begründen, dass die Elektronenwellen im Fall einer delokalisierten Vakanz durch die symmetrisierten Wellenfunktionen beschrieben werden, welche sich aus der kohärenten Überlagerung der lokalisierten Wellenfunktionen ergeben. Die resultierende Winkelverteilung der Elektronen um die Dimerachse ist somit symmetrisch. Im Fall einer lokalisierten Vakanz wird die Elektronenwelle dagegen durch die ‘rechts’ oder ‘links’ lokalisierten Wellenfunktionen, welche aus der kohärenten Überlagerung der symmetrisierten Wellenfunktionen gebildet werden, beschrieben, so dass abhängig von der Elektronenwellenlänge Asymmetrien in der Elektronen-Winkelverteilung auftreten können. Die Möglichkeit, eine eventuelle Asymmetrie in der Winkelverteilung um die Dimerachse zu beobachten ist allerdings nur dann gegeben, wenn die beiden Seiten des Dimers im Anschluss an die Reaktion unterscheidbar sind, d.h. der Ursprung des emittierten Elektrons feststellbar ist, da sich sonst der Fall einer ‘links’ lokalisierten Vakanz mit dem Fall einer ‘rechts’ lokalisierten Vakanz kohärent überlagert. Die Unterscheidung konnte in der vorliegenden Messung anhand der aus einigen Relaxationen hervorgehenden unterschiedlichen Ladungen der ionischen Fragmente des Neondimers durchgeführt werden. Insgesamt wurden im Anschluss an die 1s Photoionisation von Ne2 mit einer Rate von 3:1 der symmetrische Ladungsaufbruch Ne1+ + Ne1+ und der für die Untersuchung der Winkelverteilungen relevante asymmetrische Ladungsaufbruch Ne2+ + Ne1+ des Neondimers beobachtet. Alle in diesen beiden Ladungsaufbrüchen resultierenden intra- und interatomaren Relaxationsprozesse sowie ihre Raten wurden im Rahmen dieser Arbeit identifiziert und analysiert. Der dominante Zerfallskanal des symmetrischen Ladungsaufbruchs resultierte dabei aus dem im Anschluss an einen KL2,3L2,3 stattfindenden Radiative Charge Transfer, bei welchem unter Aussendung eines Photons ein Ladungsaustausch zwischen den Neonionen des Dimers stattfindet. Der dominante Zerfallskanal des asymmetrischen Ladungsaufbruchs wurde durch den im Anschluss an einen KL1L2,3 stattfindenden ICD bestimmt. Bei diesem in Clustern auftretenden Relaxationsprozess wird die Innerschalenvakanz aus Atom 1 durch ein Valenzelektron aus Atom 1 aufgefüllt. Sobald die Relaxationsenergie dabei nicht ausreicht, um, wie beim Augerzerfall, ein weiteres Valenzelektron aus Atom 1 zu ionisieren, wird die Energie mittels eines virtuellen Photons zum neutralen Nachbaratom des Dimers transferiert, und aus diesem wird ein Elektron, das ICD-Elektron, emittiert. Zur experimentellen Untersuchung der verschiedenen Zerfälle wurde die COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy)-Technik verwendet. Bei dieser Impulsspektroskopie werden die Fragmente mit einer Raumwinkelakzeptanz von 4pi mit Hilfe eines elektrischen und eines magnetischen Feldes auf die ortsauflösenden Detektoren geführt, und ihre Flugzeiten und Auftrefforte werden gemessen. Die COLTRIMS-Technik zeichnet sich dabei dadurch aus, dass eine koinzidente Messung der Elektronen und Ionen möglich ist, wodurch die Fragmente eines Reaktionsereignisses einander zugeordnet werden können. Innerhalb der Reaktionsereignisse fragmentierte das Neondimer im Anschluss an die Relaxation in beiden Ladungsaufbrüchen Ne1+ + Ne1+ und Ne2+ + Ne1+ unter 180° in einer Coulombexplosion. Somit spiegelten die Richtungen der Relativimpulse der Ionen im Rahmen der ‘Axial-Recoil-Approximation’ die Position der Dimerachse zum Zeitpunkt der Reaktion wider, und aus den Impulsen der Elektronen konnten die Emissionsrichtungen der Elektronen bezüglich der Dimerachse abgeleitet werden. In dieser Arbeit wurde mit der beschriebenen Messtechnik eine deutliche Asymmetrie in der Winkelverteilung der 1s Photoelektronen sowie der 2p ICD-Elektronen um die Dimerachse beobachtet. Die gemessene Winkelverteilung der 1s Photoelektronen wies dabei eine qualitativ sehr gute Übereinstimmung mit einer innerhalb einer Hartree-Fock-Rechnung erhaltenen Winkelverteilung für eine vollständig lokalisierte 1s Vakanz im Neondimer auf. Für die Winkelverteilungen der ICD-Elektronen existieren bis heute noch keine theoretischen Vorhersagen. Mit den Ergebnissen der vorliegenden Arbeit konnte somit gezeigt werden, dass entgegen den heute gängigen Theorien zur Beschreibung des Neondimers sowohl die Vakanzen der innersten Schale als auch die Vakanzen der Valenzschale des Neondimers als lokalisiert beschrieben werden müssen.
Das Ziel dieser Arbeit war die Untersuchung der Photodoppelionisation des H2-Moleküls mit zirkular polarisiertem Licht. Dabei sollte nach Anzeichen von Doppelspaltinterferenzen in den Photoelektronenwinkelverteilungen gesucht werden. Die Erscheinungen im klassischen Doppelspaltexperiment basieren auf der Interferenz der nach dem Huygenschen Prinzip gebeugten ebenen Wellen. In Analogie dazu stellen nun im molekularen System die beiden Kerne die Emissionszentren der Elektronenwelle dar. Die Interferenzerscheinung wird dabei durch die von beiden Kernen gleichzeitig emittierte Elekltronenwelle hervorgerufen. Die Photodoppelionisation des H2-Moleküls wurde mit einer Photonenenergie von 240 eV durchgeführt, um eine Wellenlänge der ionisierten Elektronen in der Größenordnung des Gleichgewichtsabstands der Kerne von 1.4 a.u. zu erreichen. Zur Erzeugung des Interferenzeffektes hätte eigentlich die Einfachionisation des Moleküls ausgereicht, da die Welle eines Elektrons gleichzeitig von beiden Protonen ausläuft. Es wurde trotzdem die Doppelionisation durchgeführt, da so die Ionen in Koinzidenz gemessen werden können und die Impulserhaltung in der Coulomb-Explosion des Moleküls zur Identifikation von H2-Ionisationsereignissen verwendet werden kann. Weitere Vorteile sind die Beobachtung der Elektronenkorrelation für verschiedene Energieaufteilungen der Elektronen, sowie die Möglichkeit der Bestimmung des internuklearen Abstandes aus der kinetischen Energie der Ionen (KER). Zunächst wurde die Winkelverteilung der Photoelektronen für eine extrem asymmetrische Energieaufteilung untersucht. Die Lage und Größe der Interferenzmaxima und -minima in der Elektronenwinkelverteilung wurde dann mit der im klassischen Doppelspaltexperiment auftretenden Interferenzstruktur verglichen. Es konnte gezeigt werden, dass das Interferenzminimum sich wie im Falle des klassischen Doppelspaltes unter einem Winkel von ca. 52° relativ zur Spalt- bzw. Molekülachse befindet. Die Größenverhältnisse von Haupt- zu Nebenmaximum wichen dagegen von den klassischen Erwartungen ab. Während beim Doppelspalt das Hauptmaximum bei 90° relativ zur Spaltachse liegt, lag in diesem Experiment das ausgeprägteste Maximum unter 0°, d.h. entlang der Molekülachse. Die experimentellen Ergebnisse wurden daraufhin mit einigen Theorien verglichen. Die Theorie von Cherepkov und Semenov, welche die Einfachionisation des Wasserstoffmoleküls für zirkular polarisiertes Licht behandelt, berechnet die Elektronenwinkelverteilung durch die Hinzunahme der Streuung der Photo-elektronenwelle am benachbarten Proton. Die Berücksichtigung dieses Effektes führt zu einer deutlich besseren Beschreibung der Daten. Da es sich in diesem Experiment um die Doppelionisation des Moleküls handelt, auch für Fälle bei denen einem Elektron nahezu keine kinetische Energie zukommt, muss die Wechselwirkung zwischen allen Fragmenten, insbesondere zwischen den Elektronen berücksichtigt werden. Die 5C-Theorie [Wal00] berücksichtigt die Coulomb-Wechselwirkung zwischen allen Fragmenten des Wasserstoffmoleküls. Die Wechselwirkung zwischen den Ionen kann allerdings im Rahmen der Born-Oppenheimer-Näherung vernachlässigt werden. Der 5C-Rechnung zeigt, wie die experimentellen Daten, verstärkte Maxima entlang der Molekülachse, jedoch ist hier die Änderung des Größenverhältnisses zu extrem im Vergleich zu den experimentellen Daten. Um die experimentell gefundene Elektronenwinkel-verteilung zu rekonstruieren, dürfen dennoch anscheinend weder Streueffekte noch die Coulomb-Wechselwirkung der Fragmente vernachlässigt werden. Im weiteren Verlauf der Arbeit wurde die Energieaufteilung der Elektronen variiert. Die Interferenzstruktur wurde für verschiedene Energien des langsamen Elektrons untersucht. Je höher die Energie des langsamen Elektrons war, umso schwächer wurde das Maximum 0. Ordnung (senkrecht zur Molekülachse) der Interferenzen des schnellen Elektrons. Die unveränderte Größe des Maximums 1. Ordnung (entlang der Molekülachse) wurde auf die Überlagerung der Streueffekte sowie der Coulomb-Wechselwirkung mit der Interferenzstruktur zurückgeführt. Über die Energie der Protonen wurde im Experiment zudem der internukleare Abstand zum Zeitpunkt der Photoabsorbtion bestimmt. Es zeigt sich eine deutliche Abhängigkeit des Interferenzmusters vom internuklearen Abstand. Die experimentell gefundene Abhängigkeit entspricht dabei der des klassischen Doppelspalts. Schließlich wurde die Elektronwinkelverteilung für eine feste Emissionsrichtung des langsamen Elektrons untersucht. In den experimentellen Daten konnte deutlich die Unterdrückung der Emissionswahrscheinlichkeit des schnellen Elektrons entlang der Emissionsrichtung des langsamen Elektrons beobachtet werden. Diese Elektronenwinkelverteilung konnte durch eine Faltung der reinen Interferenz – erzeugt durch die Integration über den Zwischenwinkel der Elektronen - mit der reinen Elektronenwechselwirkung - erzeugt durch die Integration über die Stellung der Molekülachse - rekonstruiert werden. Die Verteilung nach der Integration über die Molekülachse ähnelte dabei der Struktur der Elektronenwinkelverteilung nach der Doppelionisation des Heliumatoms. Daraus lässt sich schlussfolgern, dass die gemessene Winkelverteilung der Photoelektronen des doppelionisierten Wasserstoffmoleküls aus einer Überlagerung der Coulomb-Wechselwirkung der Elektronen des heliumähnlichen Systems mit der Interferenzstruktur besteht. Das bedeutet, die Elektron-Elektron-Korrelation und die Doppelspaltinterferenz sind zwei separate Prozesse. Die Elektronen verlassen den Molekülverband wie im Heliumatom über den SO- bzw. den TS1-Prozess und das langsame Elektron führt nicht zur Dekohärenz.