Refine
Document Type
- Article (7)
- Doctoral Thesis (1)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- paleoaltimetry (2)
- Biogeochemistry (1)
- Eocene (1)
- European Alps (1)
- GCM (1)
- Palaeoceanography (1)
- Palaeoclimate (1)
- Physical oceanography (1)
- carbonate (1)
- clumped isotopes (1)
The Paleocene-Eocene Thermal Maximum (PETM) offers insight into massive short-term carbon cycle perturbations that caused significant warming during a high-pCO2 world, affecting both marine and terrestrial ecosystems. PETM records from the marine-terrestrial interface (e.g. estuarine swamps and mire deposits) are, therefore, of great interest as their present-day counterparts are highly vulnerable to future climate and sea level change. Here, we assess paleoenvironmental changes of mid-latitudinal Late Paleocene-Early Eocene peat mire records along the paleo-North Sea coast. We provide carbon isotope data of bulk organic matter (δ13CTOC), organic carbon content (%TOC), and palynological data from an extensive peat mire deposited at a mid-latitudinal (ca. 41 °N) coastal site (Schöningen, Germany). The δ13CTOC data show a carbon isotope excursion (CIE) of −1.7 ‰ coeval with a conspicuous Apectodinium acme, calling for the presence of the PETM in this coastal section. Due to the exceptionally large stratigraphic thickness of the PETM at Schöningen (10 m of section) we established a detailed palynological record that indicates only minor changes in paleovegetation leading to and during the PETM. Instead, paleovegetation changes mostly follow natural successions in response to changes along the marine-terrestrial interface. Compared to other available peat mire records (Cobham, UK; Vasterival, France) it appears that wetland deposits around the Paleogene North Sea have a typical CIE magnitude of ca. −1.3 ‰ in δ13CTOC. Moreover, the Schöningen record shares major characteristics with the Cobham Lignite, including evidence for increased fire activity prior to the PETM, minor PETM-related plant species changes, a reduced CIE in δ13CTOC, and drowning of the mire (marine ingressions) during much of the PETM. This suggests that paleoenvironmental conditions during the Late Paleocene-Early Eocene, including the PETM, consistently affected major segments of the paleo-North Sea coast.
Abstract: Subaqueous carbonates from the Devils Hole caves (southwestern USA) provide a continuous Holocene to Pleistocene North American paleoclimate record. The accuracy of this record relies on two assumptions: That carbonates precipitated close to isotope equilibrium and that groundwater temperature did not change significantly in the last 570 thousand years. Here, we investigate these assumptions using dual clumped isotope thermometry. This method relies on simultaneous analyses of carbonate ∆47 and ∆48 values and provides information on the existence and extent of kinetic isotope fractionation. Our results confirm the hypothesis that calcite precipitation occurred close to oxygen and clumped isotope equilibrium during the last half million years in Devils Hole. In addition, we provide evidence that aquifer temperatures varied by less than ±1°C during this interval. Thus, the Devils Hole calcite δ18O time series exclusively represents changes in groundwater δ18O values. Plain Language Summary: The oxygen isotope composition of cave carbonates records changes in Earth's climate. However, the reliability of such records depends on how stable the carbonate precipitation environment was. Here, we use a novel method called dual clumped isotope thermometry that can provide simultaneous information on a carbonate's growth temperature and whether any additional fractionation processes affected its oxygen and clumped isotope signatures. Specifically, we investigated the Devils Hole caves, which provide a reference oxygen isotope time series for North America. We find that groundwater temperature did not change significantly in the last half-million years. Variations in the oxygen isotope composition of the deposited carbonates solely reflect variations in the oxygen isotope composition of the groundwater.
Reconstructing Oligocene–Miocene paleoelevation contributes to our understanding of the evolutionary history of the European Alps and sheds light on geodynamic and Earth surface processes involved in the development of Alpine topography. Despite being one of the most intensively explored mountain ranges worldwide, constraints on the elevation history of the European Alps remain scarce. Here we present stable and clumped isotope measurements to provide a new paleoelevation estimate for the mid-Miocene (∼14.5 Ma) European Central Alps. We apply stable isotope δ–δ paleoaltimetry to near-sea-level pedogenic carbonate oxygen isotope (δ18O) records from the Northern Alpine Foreland Basin (Swiss Molasse Basin) and high-Alpine phyllosilicate hydrogen isotope (δD) records from the Simplon Fault Zone (Swiss Alps). We further explore Miocene paleoclimate and paleoenvironmental conditions in the Swiss Molasse Basin through carbonate stable (δ18O, δ13C) and clumped (Δ47) isotope data from three foreland basin sections in different alluvial megafan settings (proximal, mid-fan, and distal). Combined pedogenic carbonate δ18O values and Δ47 temperatures (30±5 ∘C) yield a near-sea-level precipitation δ18Ow value of ‰ and, in conjunction with the high-Alpine phyllosilicate δD value of ‰, suggest that the region surrounding the Simplon Fault Zone attained surface elevations of >4000 m no later than the mid-Miocene. Our near-sea-level δ18Ow estimate is supported by paleoclimate (iGCM ECHAM5-wiso) modeled δ18O values, which vary between −4.2 ‰ and −7.6 ‰ for the Northern Alpine Foreland Basin.
Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.
Triple oxygen isotope measurements are an emerging tool in paleoclimate reconstructions. In this contribution we develop the application of triple oxygen isotope measurements to lacustrine sediments to reconstruct past elevations. We focus on a well-constrained sample set from the Eocene North American Cordillera (Cherty Limestone Formation, Elko Basin, NV, United States, 42–43.5 Ma) on the east side of the elevated Nevadaplano. We present triple oxygen isotope measurements on freshwater lacustrine chert samples from the Cherty Limestone Formation. Across an evaporation trend spanning 6.5‰ in δ18O values we observe a negative correlation with Δ′17O ranging from −0.066 to −0.111‰ (λRL = 0.528), with an empirical slope (λchert, δ′17O vs. δ′18O) of 0.5236. Additionally, we present new carbonate clumped isotope (Δ47) temperature results on the overlying fluvial-lacustrine Elko Formation, which indicate an error-weighted mean temperature of 32.5 ± 3.8°C (1σ), and evaporatively enriched lake water spanning δ18O values of −3.7 to +3.5‰ (VSMOW). Paired chert and carbonate δ18O values demonstrate that co-equilbrium among the carbonate and chert phases is unlikely. Thus, as also previously suggested, it is most likely that Elko Basin chert formed during early diagenesis in equilbirium with pore waters that reflect evaporatively 18O-enriched lake water. Using this scenario we apply a model for back-calculating unevaporated water composition to derive a source water of δ′18O = −16.1‰ (VSMOW), similar to modern local meteoric waters but lower than previous work on paired δ18O- δD measurements from the same chert samples. Further, this back-calculated unevaporated source water is higher than those derived using δD measurements of Late Eocene hydrated volcanic glass from the Elko Basin (average δ′18O equivalent of approximately −18.4‰, VSMOW). This suggests, assuming Eocene meteoric water Δ′17O values similar to today (∼0.032‰), either that: (1) the hypsometric mean elevation recorded by the lacustrine Cherty Limestone was lower than that derived from the average of the volcanic glass δD measurements alone; or (2) there was hydrogen exchange in volcanic glass with later low δD meteoric fluids. Nonetheless, our new findings support a relatively high (∼2.5–3 km) plateau recorded in the Elko Basin during the mid-Eocene.
Opportunities and challenges for paleoaltimetry in "small" orogens: insights from the European Alps
(2020)
Many stable isotope paleoaltimetry studies have focused on paleoelevation reconstructions of orogenic plateaus such as the Tibetan or Andean Plateaus. We address the opportunities and challenges of applying stable isotope paleoaltimetry to “smaller” orogens. We do this using a high‐resolution isotope tracking general circulation model (ECHAM5‐wiso) and explore the precipitation δ18O (δ18Op) signal of Cenozoic paleoclimate and topographic change in the European Alps. Results predict a maximum δ18Op change of 4–5‰ (relative to present day) during topographic development of the Alps. This signal of topographic change has the same magnitude as changes in δ18Op values resulting from Pliocene and Last Glacial Maximum global climatic change. Despite the similar magnitude of the isotopic signals resulting from topographic and paleoclimate changes, their spatial patterns across central Europe differ. Our results suggest that an integration of paleoclimate modeling, multiproxy approaches, and low‐elevation reference proxy records distal from an orogen improve topographic reconstructions.
This thesis addresses the reconstruction of the topographic evolution and the climate dynamics of the Early Cenozoic North American Cordillera through integrated geochronology, sedimentology, stable isotope, and clumped isotope thermometry studies. It encompasses the scientific disciplines of geochemistry, tectonics, and Earth surface processes.
Reconstructing Oligocene-Miocene paleoelevation contributes to our understanding of the evolutionary history of the European Alps and sheds light on geodynamic and Earth’s surface processes involved in the development of Alpine topography. Despite being one of the most intensively explored mountain ranges worldwide, constraints on the elevation history of the European Alps, however, remain scarce. Here we present stable and clumped isotope geochemistry 15 measurements to provide a new paleoelevation estimate for the mid-Miocene (~14.5 Ma) European Central Alps. We apply stable isotope δ-δ paleoaltimetry on near sea level pedogenic carbonate oxygen isotope (δ18O) records from the Northern Alpine Foreland Basin (Swiss Molasse Basin) and high-Alpine phyllosilicate hydrogen isotope (δD) records from the Simplon Fault Zone (Swiss Alps). We further explore Miocene paleoclimate and paleoenvironmental conditions in the Swiss Molasse Basin through carbonate stable (δ18O, δ13C) and clumped (Δ47) isotope data from three foreland basin sections in different 20 alluvial megafan settings (proximal, mid-fan, and distal). Combined pedogenic carbonate δ18O values and Δ47 temperatures (30 ± 5°C) yield a near sea level precipitation δ18Ow value of -5.8 ± 0.2‰ and in conjunction with the high-Alpine phyllosilicate δD record suggest that the region surrounding the SFZ attained surface elevations of >4000 m no later than the mid-Miocene. Our near sea level δ18Ow estimate is supported by paleoclimate (iGCM Echam5-wiso) modeled δ18O values, which vary between -4.2 and -7.6‰ for the Northern Alpine Foreland Basin.