Refine
Year of publication
Document Type
- Article (67)
- Conference Proceeding (3)
- Preprint (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (73)
Is part of the Bibliography
- no (73)
Keywords
Institute
- Physik (67)
- ELEMENTS (10)
- Biochemie, Chemie und Pharmazie (4)
- Helmholtz International Center for FAIR (1)
- Medizin (1)
- Präsidium (1)
The elements in the universe are mainly produced by charged-particle fusion reactions and neutron-capture reactions. About 35 proton-rich isotopes, the p-nuclei, cannot be produced via neutron-induced reactions. To date, nucleosynthesis simulations of possible production sites fail to reproduce the p-nuclei abundances observed in the solar system. In particular, the origin of the light p-nuclei 92Mo, 94Mo, 96Ru and 98Ru is little understood. The nucleosynthesis simulations rely on assumptions about the seed abundance distributions, the nuclear reaction network and the astrophysical environment. This work addressed the nuclear data input.
The key reaction 94Mo(g,n) for the production ratio of the p-nuclei 92Mo and 94Mo was investigated via Coulomb dissociation at the LAND/R3B setup at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. A beam of 94Mo with an energy of 500 AMeV was directed onto a lead target. The neutron-dissociation reactions following the Coulomb excitation by virtual photons of the electromagnetic field of the target nucleus were investigated. All particles in the incoming and outgoing channels of the reaction were identified and their kinematics were determined in a complex analysis. The systematic uncertainties were analyzed by calculating the cross sections for all possible combinations of the data selection criteria. The integral Coulomb dissociation cross section of the reaction 94Mo(g,n) was determined to be (571 +- 14 (stat) +- 46 (syst) ) mb. The result was compared to the data obtained in a real photon experiment carried out at the Saclay linear accelerator. The ratio of the integral cross sections was found to be 0.63 +- 0.07, which is lower than the expected value of about 0.8.
The nucleosynthesis of the light p-nuclei 92Mo, 94Mo, 96Ru and 98Ru was investigated in post-processing nucleosynthesis simulations within the NuGrid research platform. The impact of rate uncertainties of the most important production and destruction reactions was studied for a Supernova type II model. It could be shown that the light p-nuclei are mainly produced via neutron-dissociation reactions on heavier nuclei in the isotopic chains, and that the final abundances of these p-nuclei are determined by their main destruction reactions. The nucleosynthesis of 92Mo and 94Mo was also studied in different environments of a Supernova type Ia model. It was concluded that the maximum temperature and the duration of the high temperature phase determine the final abundances of 92Mo and 94Mo.
An accurate measurement of the 140Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140Ce Maxwellian-averaged cross-section.
Neutron capture on 241Am plays an important role in the nuclear energy production and also provides valuable information for the improvement of nuclear models and the statistical interpretation of the nuclear properties. A new experiment to measure the 241Am(n, γ) cross section in the thermal region and the first few resonances below 10 eV has been carried out at EAR2 of the n_TOF facility at CERN. Three neutron-insensitive C6D6 detectors have been used to measure the neutron-capture gamma cascade as a function of the neutron time of flight, and then deduce the neutron capture yield. Preliminary results will be presented and compared with previously obtained results at the same facility in EAR1. In EAR1 the gamma-ray background at thermal energies was about 90% of the signal while in EAR2 is up to a 25 factor much more favorable signal to noise ratio. We also extended the low energy limit down to subthermal energies. This measurement will allow a comparison with neutron capture measurements conducted at reactors and using a different experimental technique.
Background: About 30 million people in the EU and USA, respectively, suffer from a rare disease. Driven by European legislative requirements, national strategies for the improvement of care in rare diseases are being developed. To improve timely and correct diagnosis for patients with rare diseases, the development of a registry for undiagnosed patients was recommended by the German National Action Plan. In this paper we focus on the question on how such a registry for undiagnosed patients can be built and which information it should contain. Results: To develop a registry for undiagnosed patients, a software for data acquisition and storage, an appropriate data set and an applicable terminology/classification system for the data collected are needed. We have used the open-source software Open-Source Registry System for Rare Diseases (OSSE) to build the registry for undiagnosed patients. Our data set is based on the minimal data set for rare disease patient registries recommended by the European Rare Disease Registries Platform. We extended this Common Data Set to also include symptoms, clinical findings and other diagnoses. In order to ensure findability, comparability and statistical analysis, symptoms, clinical findings and diagnoses have to be encoded. We evaluated three medical ontologies (SNOMED CT, HPO and LOINC) for their usefulness. With exact matches of 98% of tested medical terms, a mean number of five deposited synonyms, SNOMED CT seemed to fit our needs best. HPO and LOINC provided 73% and 31% of exacts matches of clinical terms respectively. Allowing more generic codes for a defined symptom, with SNOMED CT 99%, with HPO 89% and with LOINC 39% of terms could be encoded. Conclusions: With the use of the OSSE software and a data set, which, in addition to the Common Data Set, focuses on symptoms and clinical findings, a functioning and meaningful registry for undiagnosed patients can be implemented. The next step is the implementation of the registry in centres for rare diseases. With the help of medical informatics and big data analysis, case similarity analyses could be realized and aid as a decision-support tool enabling diagnosis of some undiagnosed patients.
The production of 77,79,85,85mKr and 77Br via the reaction Se(a, x) was investigated between Ea = 11 and 15 MeV using the activation technique. The irradiation of natural selenium targets on aluminum backings was conducted at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. The spectroscopic analysis of the reaction products was performed using a high-purity germanium detector located at PTB and a low energy photon spectrometer detector at the Goethe University Frankfurt, Germany. Thicktarget yields were determined. The corresponding energy-dependent production cross sections of 77,79,85,85mKr and 77Br were calculated from the thicktarget yields. Good agreement between experimental data and theoretical predictions using the TALYS-1.6 code was found.
XIII Nuclei in the Cosmos, 7-11 July, 2014 Debrecen, Hungary.
As an alternative production scenario to the so-called g process, the most abundant p nucleus 92Mo may be produced by a chain of proton-capture reactions in supernovae type Ia. The reactions 90Zr(p,g) and 91Nb(p,g) are the most important reactions in this chain. We have measured the first reaction using high-resolution in-beam g-spectroscopy at HORUS, Cologne, Germany, to contribute to the existing experimental data base. So far, we only investigated the high-energy part of the Gamow window and the analysis is still in progress. We plan to study the second reaction in standard kinematics at the FRANZ facility, Frankfurt, Germany. Current developments at FRANZ will be explained in detail.
p-process nucleosynthesis via proton-capture reactions in thermonuclear supernovae explosions
(2015)
Model calculations within the framework of the so-called γ process show an underproduction of the p nucleus with the highest isotopic abundace 92Mo. This discrepancy can be narrowed by taking into account the alternative production site of a type Ia supernova explosion. Here, the nucleus 92Mo can be produced by a sequence of proton-capture reactions. The amount of 92Mo nuclei produced via this reaction chain is most sensitive to the reactions 90Zr(p,γ) and 91Nb(p,γ). Both rates have to be investigated experimentally to study the impact of this nucleosynthesis aspect on the long-standing 92Mo-problem. We have already measured the proton-capture reaction on 90Zr using high-resolution in-beam γ-ray spectroscopy. In this contribution, we will present our preliminary results of the total cross sections as well as the partial cross sections. Furthermore, we plan to measure the 91Nb(p,γ) reaction soon. Due to the radioactive target material, the 91Nb nuclei have to be produced prior to the experiment. The current status of this production will be presented in this contribution.
We discuss the possibility to build a neutron target for nuclear reaction studies in inverse kinematics utilizing a storage ring and radioactive ion beams. The proposed neutron target is a specially designed spallation target surrounded by a large moderator of heavy water (D2O). We present the resulting neutron spectra and their properties as a target. We discuss possible realizations at different experimental facilities.