• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Bankov, Katrin (8)
  • Döring, Claudia (5)
  • Hansmann, Martin-Leo (4)
  • Hartmann, Sylvia (4)
  • Wild, Peter Johannes (3)
  • Chun, Felix (2)
  • Herling, Marco (2)
  • Köllermann, Jens (2)
  • Zeuzem, Stefan (2)
  • Ackermann, Anne (1)
+ more

Year of publication

  • 2020 (3)
  • 2019 (2)
  • 2017 (1)
  • 2018 (1)
  • 2022 (1)

Document Type

  • Article (7)
  • Doctoral Thesis (1)

Language

  • English (8)

Has Fulltext

  • yes (8)

Is part of the Bibliography

  • no (8)

Keywords

  • classical Hodgkin lymphoma (2)
  • tumor microenvironment (2)
  • Artificial intelligence (1)
  • Caco-2 cells (1)
  • Cell motility (1)
  • Colorectal cancer (1)
  • Cytoskeletal proteins (1)
  • Immunohistochemistry techniques (1)
  • Machine learning (1)
  • Metastasis (1)
+ more

Institute

  • Medizin (7)
  • Biochemie, Chemie und Pharmazie (1)
  • Frankfurt Institute for Advanced Studies (FIAS) (1)
  • Informatik und Mathematik (1)

8 search hits

  • 1 to 8
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Downregulation of SPTAN1 is related to MLH1 deficiency and metastasis in colorectal cancer (2019)
Ackermann, Anne ; Schrecker, Christopher ; Bon, Dimitra ; Friedrichs, Nicolaus ; Bankov, Katrin ; Wild, Peter Johannes ; Plotz, Guido ; Zeuzem, Stefan ; Herrmann, Eva ; Hansmann, Martin-Leo ; Brieger, Angela
Introduction: Colorectal cancers (CRCs) deficient in the DNA mismatch repair protein MutL homolog 1 (MLH1) display distinct clinicopathological features and require a different therapeutic approach compared to CRCs with MLH1 proficiency. However, the molecular basis of this fundamental difference remains elusive. Here, we report that MLH1-deficient CRCs exhibit reduced levels of the cytoskeletal scaffolding protein non-erythroid spectrin αII (SPTAN1), and that tumor progression and metastasis of CRCs correlate with SPTAN1 levels. Methods and results: To investigate the link between MLH1 and SPTAN1 in cancer progression, a cohort of 189 patients with CRC was analyzed by immunohistochemistry. Compared with the surrounding normal mucosa, SPTAN1 expression was reduced in MLH1-deficient CRCs, whereas MLH1-proficient CRCs showed a significant upregulation of SPTAN1. Overall, we identified a strong correlation between MLH1 status and SPTAN1 expression. When comparing TNM classification and SPTAN1 levels, we found higher SPTAN1 levels in stage I CRCs, while stages II to IV showed a gradual reduction of SPTAN1 expression. In addition, SPTAN1 expression was lower in metastatic compared with non-metastatic CRCs. Knockdown of SPTAN1 in CRC cell lines demonstrated decreased cell viability, impaired cellular mobility and reduced cell-cell contact formation, indicating that SPTAN1 plays an important role in cell growth and cell attachment. The observed weakened cell-cell contact of SPTAN1 knockdown cells might indicate that tumor cells expressing low levels of SPTAN1 detach from their primary tumor and metastasize more easily. Conclusion: Taken together, we demonstrate that MLH1 deficiency, low SPTAN1 expression, and tumor progression and metastasis are in close relation. We conclude that SPTAN1 is a candidate molecule explaining the tumor progression and metastasis of MLH1-deficient CRCs. The detailed analysis of SPTAN1 is now mandatory to substantiate its relevance and its potential value as a candidate protein for targeted therapy, and as a predictive marker of cancer aggressiveness.
Small and big Hodgkin-Reed-Sternberg cells of Hodgkin lymphoma cell lines L-428 and L-1236 lack consistent differences in gene expression profiles and are capable to reconstitute each other (2017)
Rengstl, Benjamin ; Kim, Sooji ; Döring, Claudia ; Weiser, Christian ; Bein, Julia ; Bankov, Katrin ; Herling, Marco ; Newrzela, Sebastian ; Hansmann, Martin-Leo ; Hartmann, Sylvia
The hallmark of classical Hodgkin lymphoma (cHL) is the presence of giant, mostly multinucleated Hodgkin-Reed-Sternberg (HRS) cells. Whereas it has recently been shown that giant HRS cells evolve from small Hodgkin cells by incomplete cytokinesis and re-fusion of tethered sister cells, it remains unsolved why this phenomenon particularly takes place in this lymphoma and what the differences between these cell types of variable sizes are. The aim of the present study was to characterize microdissected small and giant HRS cells by gene expression profiling and to assess differences of clonal growth behavior as well as susceptibility toward cytotoxic intervention between these different cell types to provide more insight into their distinct cellular potential. Applying stringent filter criteria, only two differentially expressed genes between small and giant HRS cells, SHFM1 and LDHB, were identified. With looser filter criteria, 13 genes were identified to be differentially overexpressed in small compared to giant HRS cells. These were mainly related to energy metabolism and protein synthesis, further suggesting that small Hodgkin cells resemble the proliferative compartment of cHL. SHFM1, which is known to be involved in the generation of giant cells, was downregulated in giant RS cells at the RNA level. However, reduced mRNA levels of SHFM1, LDHB and HSPA8 did not translate into decreased protein levels in giant HRS cells. In cell culture experiments it was observed that the fraction of small and big HRS cells was adjusted to the basic level several days after enrichment of these populations via cell sorting, indicating that small and big HRS cells can reconstitute the full spectrum of cells usually observed in the culture. However, assessment of clonal growth of HRS cells indicated a significantly reduced potential of big HRS cells to form single cell colonies. Taken together, our findings pinpoint to strong similarities but also some differences between small and big HRS cells.
Sequencing of intraductal biopsies is feasible and potentially impacts clinical management of patients with indeterminate biliary stricture and cholangiocarcinoma (2018)
Bankov, Katrin ; Döring, Claudia ; Schneider, Markus ; Hartmann, Sylvia ; Winkelmann, Anne Ria ; Albert, Jörg Gerhard ; Bechstein, Wolf Otto ; Zeuzem, Stefan ; Hansmann, Martin-Leo ; Peveling-Oberhag, Jan Franz-Josef ; Walter, Dirk
Background: Definite diagnosis and therapeutic management of cholangiocarcinoma (CCA) remains a challenge. The aim of the current study was to investigate feasibility and potential impact on clinical management of targeted sequencing of intraductal biopsies. Methods: Intraductal biopsies with suspicious findings from 16 patients with CCA in later clinical course were analyzed with targeted sequencing including tumor and control benign tissue (n = 55 samples). A CCA-specific sequencing panel containing 41 genes was designed and a dual strand targeted enrichment was applied. Results: Sequencing was successfully performed for all samples. In total, 79 mutations were identified and a mean of 1.7 mutations per tumor sample (range 0–4) as well as 2.3 per biopsy (0–6) were detected and potentially therapeutically relevant genes were identified in 6/16 cases. In 14/18 (78%) biopsies with dysplasia or inconclusive findings at least one mutation was detected. The majority of mutations were found in both surgical specimen and biopsy (68%), while 28% were only present in biopsies in contrast to 4% being only present in the surgical tumor specimen. Conclusion: Targeted sequencing from intraductal biopsies is feasible and potentially improves the diagnostic yield. A profound genetic heterogeneity in biliary dysplasia needs to be considered in clinical management and warrants further investigation. Translational impact: The current study is the first to demonstrate the feasibility of sequencing of intraductal biopsies which holds the potential to impact diagnostic and therapeutical management of patients with biliary dysplasia and neoplasia.
Fibroblasts in nodular sclerosing classical hodgkin lymphoma are defined by a specific phenotype and protect tumor cells from brentuximab-vedotin induced injury (2019)
Bankov, Katrin ; Döring, Claudia ; Ustaszewski, Adam ; Giefing, Maciej ; Herling, Marco ; Cencioni, Chiara ; Spallotta, Francesco ; Gaetano, Carlo ; Küppers, Ralf ; Hansmann, Martin-Leo ; Hartmann, Sylvia
Classical Hodgkin lymphoma (cHL) is one of the most common malignant lymphomas in Western Europe. The nodular sclerosing subtype of cHL (NS cHL) is characterized by a proliferation of fibroblasts in the tumor microenvironment, leading to fibrotic bands surrounding the lymphoma infiltrate. Several studies have described a crosstalk between the tumour cells of cHL, the Hodgkin- and Reed-Sternberg (HRS) cells, and cancer-associated fibroblasts. However, to date a deep molecular characterization of these fibroblasts is lacking. Thus, the aim of the present study is a comprehensive characterization of these fibroblasts. Gene expression profiling and methylation profiles of fibroblasts isolated from primary lymph node suspensions revealed persistent differences between fibroblasts obtained from NS cHL and lymphadenitis. NS cHL derived fibroblasts exhibit a myofibroblastic phenotype characterized by myocardin (MYOCD) expression. Moreover, TIMP3, an inhibitor of matrix metalloproteinases, was strongly upregulated in NS cHL fibroblasts, likely contributing to the accumulation of collagen in sclerotic bands of NS cHL. As previously shown for other types of cancer-associated fibroblasts, treatment by luteolin could reverse this fibroblast phenotype and decrease TIMP3 secretion. NS cHL fibroblasts showed enhanced proliferation when they were exposed to soluble factors released from HRS cells. For HRS cells, soluble factors from fibroblasts were not sufficient to protect them from Brentuximab-Vedotin induced cell death. However, HRS cells adherent to fibroblasts were protected from Brentuximab-Vedotin induced injury. In summary, we confirm the importance of fibroblasts for HRS cell survival and identify TIMP3 which probably contributes as a major factor to the typical fibrosis observed in NS cHL.
Molecular characterisation of nodular sclerosing classical Hodgkin lymphoma derived fibroblasts and their beneficial interaction with Hodgkin Reed Sternberg cells (2020)
Bankov, Katrin
Classical Hodgkin lymphoma (cHL) is one of the most common malignant lymphomas in Western Europe. The nodular sclerosing subtype of cHL (NS cHL) is characterised by a proliferation of fibroblasts in the tumour microenvironment, leading to fibrotic bands surrounding the lymphoma infiltrate. Several studies have described a crosstalk between the tumour cells of cHL, the Hodgkin- and Reed-Sternberg (HRS) cells, and cancerassociated fibroblasts (CAF). However, to date a deep molecular understanding of these fibroblasts is lacking. Aim of the present study therefore was a comprehensive characterisation of these fibroblasts. Moreover, only a few studies describe the interplay of HRS cells and CAF. The paracrine communication and direct interaction of these two cellular fractions have been investigated within this study. Finally, the influence of a few HRS cells within a lymph node orchestrate the mere alteration of its architecture and morphology. Gene expression and methylation profiles of fibroblasts isolated from primary lymph node suspensions revealed persistent differences between fibroblasts obtained from NS cHL and lymphadenitis. NS cHL derived fibroblasts exhibit a myofibroblastic - inflammatory phenotype characterised by MYOCD, CNN1 and IL-6 expression. TIMP3, an inhibitor of matrix metalloproteinases, was strongly upregulated in NS cHL fibroblasts, likely contributing to the accumulation of collagen in sclerotic bands of NS cHL. Treatment by luteolin could reverse this fibroblast phenotype and decrease TIMP3 secretion. NS cHL fibroblasts showed enhanced proliferation when they were exposed to soluble factors released from HRS cells. For HRS cells, soluble factors from fibroblasts were not sufficient to protect them from Brentuximab-Vedotin(BV) induced cell death. However, HRS cells adherent to fibroblasts were protected from BV-induced injury. The cHL specific interaction of both cell fractions reveals an initiation of inflammatory key regulators such as IL13 and IL4. Among important adhesion molecules known from literature the blocking of integrin beta 1 solely interrupted the adhesion of HRS cells to CAF. In summary, this study proves the stable reprograming of CAF phenotype and expression derived from NS cHL. It presents a suitable in vitro model for studying the interaction of HRS cells and CAF by paracrine factors and adherence. Most importantly the observations confirm the importance of fibroblasts for HRS cells´ inflammatory niche and cell survival associated with TIMP3 which probably acts as a major factor to the typical accumulation of fibrosis observed in NS cHL.
Identification of tumor-associated macrophage subsets that are associated with breast cancer prognosis (2020)
Strack, Elisabeth ; Rolfe, P. Alexander ; Fink, Annika ; Bankov, Katrin ; Schmid, Tobias ; Solbach, Christine ; Savai, Rajkumar ; Sha, Weixiao ; Pradel, Leon ; Hartmann, Sylvia ; Brüne, Bernhard ; Weigert, Andreas
Background: Breast cancer is the leading cause of cancer-related deaths in women, demanding new treatment options. With the advent of immune checkpoint blockade, immunotherapy emerged as a treatment option. In addition to lymphocytes, tumor-associated macrophages exert a significant, albeit controversial, impact on tumor development. Pro-inflammatory macrophages are thought to hinder, whereas anti-inflammatory macrophages promote tumor growth. However, molecular markers to identify prognostic macrophage populations remain elusive. Methods: We isolated two macrophage subsets, from 48 primary human breast tumors, distinguished by the expression of CD206. Their transcriptomes were analyzed via RNA-Seq, and potential prognostic macrophage markers were validated by PhenOptics in tissue microarrays of patients with invasive breast cancer. Results: Normal human breast tissue contained mainly CD206+ macrophages, while increased relative amounts of CD206− macrophages were observed in tumors. The presence of CD206+ macrophages correlated with a pronounced lymphocyte infiltrate and subsets of CD206+ macrophages, expressing SERPINH1 and collagen 1, or MORC4, were unexpectedly associated with improved survival of breast cancer patients. In contrast, MHCIIhi CD206− macrophages were linked with a poor survival prognosis. Conclusion: Our data highlight the heterogeneity of tumor-infiltrating macrophages and suggest the use of multiple phenotypic markers to predict the impact of macrophage subpopulations on cancer prognosis. We identified novel macrophage markers that correlate with the survival of patients with invasive mammary carcinoma.
Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features (2020)
Bernatz, Simon ; Ackermann, Jörg ; Mandel, Philipp ; Kaltenbach, Benjamin ; Zhdanovich, Yauheniya ; Harter, Patrick Nikolaus ; Döring, Claudia ; Hammerstingl, Renate Maria ; Bodelle, Boris ; Smith, Kevin ; Bucher, Andreas ; Albrecht, Moritz Hans Ernst ; Rosbach, Nicolas ; Basten, Lajos Maximilian ; Yel, Ibrahim ; Wenzel, Mike ; Bankov, Katrin ; Koch, Ina ; Chun, Felix ; Köllermann, Jens ; Wild, Peter Johannes ; Vogl, Thomas J.
Objectives: To analyze the performance of radiological assessment categories and quantitative computational analysis of apparent diffusion coefficient (ADC) maps using variant machine learning algorithms to differentiate clinically significant versus insignificant prostate cancer (PCa). Methods: Retrospectively, 73 patients were included in the study. The patients (mean age, 66.3 ± 7.6 years) were examined with multiparametric MRI (mpMRI) prior to radical prostatectomy (n = 33) or targeted biopsy (n = 40). The index lesion was annotated in MRI ADC and the equivalent histologic slides according to the highest Gleason Grade Group (GrG). Volumes of interest (VOIs) were determined for each lesion and normal-appearing peripheral zone. VOIs were processed by radiomic analysis. For the classification of lesions according to their clinical significance (GrG ≥ 3), principal component (PC) analysis, univariate analysis (UA) with consecutive support vector machines, neural networks, and random forest analysis were performed. Results: PC analysis discriminated between benign and malignant prostate tissue. PC evaluation yielded no stratification of PCa lesions according to their clinical significance, but UA revealed differences in clinical assessment categories and radiomic features. We trained three classification models with fifteen feature subsets. We identified a subset of shape features which improved the diagnostic accuracy of the clinical assessment categories (maximum increase in diagnostic accuracy ΔAUC = + 0.05, p < 0.001) while also identifying combinations of features and models which reduced overall accuracy. Conclusions: The impact of radiomic features to differentiate PCa lesions according to their clinical significance remains controversial. It depends on feature selection and the employed machine learning algorithms. It can result in improvement or reduction of diagnostic performance.
CK5/6 and GATA3 defined phenotypes of muscle-invasive bladder cancer: impact in adjuvant chemotherapy and molecular subtyping of negative cases (2022)
Koll, Florestan J. ; Schwarz, Alina ; Köllermann, Jens ; Banek, Séverine ; Kluth, Luis ; Wittler, Clarissa ; Bankov, Katrin ; Döring, Claudia ; Becker, Nina ; Chun, Felix ; Wild, Peter Johannes ; Reis, Henning
Introduction and Objective: Identifying patients that benefit from cisplatin-based adjuvant chemotherapy is a major issue in the management of muscle-invasive bladder cancer (MIBC). The purpose of this study is to correlate “luminal” and “basal” type protein expression with histological subtypes, to investigate the prognostic impact on survival after adjuvant chemotherapy and to define molecular consensus subtypes of “double negative” patients (i.e., without expression of CK5/6 or GATA3). Materials and Methods: We performed immunohistochemical (IHC) analysis of CK5/6 and GATA3 for surrogate molecular subtyping in 181 MIBC samples. The mRNA expression profiles for molecular consensus classification were determined in CK5/6 and GATA3 (double) negative cases using a transcriptome panel with 19.398 mRNA targets (HTG Molecular Diagnostics). Data of 110 patients undergoing radical cystectomy were available for survival analysis. Results: The expression of CK5/6 correlated with squamous histological subtype (96%) and expression of GATA3 was associated with micropapillary histology (100%). In the multivariate Cox-regression model, patients receiving adjuvant chemotherapy had a significant survival benefit (hazard ratio [HR]: 0.19 95% confidence interval [CI]: 0.1–0.4, p < 0.001) and double-negative cases had decreased OS (HR: 4.07; 95% CI: 1.5–10.9, p = 0.005). Double negative cases were classified as NE-like (30%), stroma-rich (30%), and Ba/Sq (40%) consensus molecular subtypes and displaying different histological subtypes.
  • 1 to 8

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks