Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca2+-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca2+ by tandem endosomes into the cytosol via CatCh was visualized using the Ca2+-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca2+ in response to light.
Channelrhodopsin-2, or ChR2, is a light-gated inward rectifying cation channel. Ever since its first characterisation (Nagel et al., 2003), it has been used extensively in the light-activated control of neural cells in culture as well as in living animals like mice, Caenorhabditis elegans and Drosophila melanagaster. Despite its broad application in the field of neuroscience, little is known about the properties of this ion channel. The aim of this thesis is to elucidate the single channel conductance under different conditions using stationary noise analysis on whole cell recordings of a HEK293 cell line that stably expresses the truncated ChR2 (amino acids 1-315), which behaves identically to the full length protein (Nagel et al., 2003). Stationary noise analysis is based on the fact that the ion channel noise due their opening and closing has a characteristic form of a plateau at low frequency points and a following decrease of power with 1/f² in difference power spectra, which are composed of the difference of fast Fourier transformed (FFT) stationary whole-cell recordings with and without illumination. From the parameters yielded by an approximation of the power spectra with a Lorentzian function the single channel conductance can be estimated. The single channel conductance of ChR2 was determined at -60 mV applied for different cations, yielding values of 91 ± 25 fS (Guanidine+), 42 ± 7 fS (Na+), 61 ± 18 fS (Li+) and 37 ± 14 fS (Methylammonium+). With 200 mM Guanidine+ outside of the cells and measurements between 0 mV and -60 mV applied, it could be shown that the inward rectification is still present on the scale of the single channel. Noise Analysis with concentrations between 40 and 200 mM Guanidine+ showed a saturation of the single channel conductance with high Guanidine+ concentrations with a maximal conduction of 129 ± 9 fS (Michaelis Menten approximation: Km = 82 ± 14 mM). Activation Energies of the rate constants k (2πfc, with fc = corner frequency of the Lorentzian function) and koff (1/τoff, with τoff = closing time of the channel at -60 mV) were determined to be 75 ± 23 kJ/mol and 64 ± 11 kJ/mol, respectively, which are similar to the value determined for the Channelrhodopsin-1 closing times (~60 kJ/mol; Nagel et al., 2002). The activation energy of the ChR2 single channel conductance was determined to be 21.2 ± 20.8 kJ/mol, which also is similar to the activation energy of the ChR1 current amplitude (20 kJ/mol; Nagel et al., 2002). The amount of active ChR2 channels in the membrane (160,000 or 226 ChR2/μm²) as well as the single channel current (-7.5 ± 0.6 fA) could be determined by variation of the light intensity (0.05 mW mm-2 to 5.3 mW mm-2). In the course of this thesis, the single channel parameters of the ChR2 mutant H134R were also determined. H134R had been previously published as a “gainof- function” mutant (Nagel et al., 2005a). The increased macroscopic current amplitude of H134R could be explained by an increased lifetime of the channel in comparison to the wildtype ChR2. Within the margin of error both single channel conductances in the presence of 200 mM Guanidine+ of the wildtype (91.1 ± 24.9 fS) and the H134R (89.4 ± 30.7 fS) are the same. In the presence of 200 mM Lithium+ values of 60.6 ± 17.8 fS for the wildtype ChR2 and 50.8 ± 9.6 fS for the H134R mutant were determined. This thesis marks the first in depth analysis of the single channel conductance of ChR2. Using stationary noise analysis the single channel conductance of Channelrhodopsin-1 as well as interesting Channelrhodopsin-2 mutants can also be analysed in the future.