Refine
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Bacterial genes (1)
- Biosynthesis (1)
- Evolutionary genetics (1)
- artificial docking domains (1)
- biosynthesis (1)
- ceramide phosphoinositols (1)
- electrospray ionization-mass spectrometry (1)
- engineering (1)
- ether lipids (1)
- lipid profiles (1)
Reprogramming biosynthetic assembly-lines is a topic of intense interest. This is unsurprising as the scaffolds of most antibiotics in current clinical use are produced by such pathways. The modular nature of assembly-lines provides a direct relationship between the sequence of enzymatic domains and the chemical structure of the product, but rational reprogramming efforts have been met with limited success. To gain greater insight into the design process, we wanted to examine how Nature creates assembly-lines and searched for biosynthetic pathways that might represent evolutionary transitions. By examining the biosynthesis of the anti-tubercular wollamides, we uncover how whole gene duplication and neofunctionalization can result in pathway bifurcation. We show that, in the case of the wollamide biosynthesis, neofunctionalization is initiated by intragenomic recombination. This pathway bifurcation leads to redundancy, providing the genetic robustness required to enable large structural changes during the evolution of antibiotic structures. Should the new product be non-functional, gene loss can restore the original genotype. However, if the new product confers an advantage, depreciation and eventual loss of the original gene creates a new linear pathway. This provides the blind watchmaker equivalent to the design, build, test cycle of synthetic biology.
Many clinically used drugs are derived from or inspired by bacterial natural products that often are biosynthesised via non-ribosomal peptide synthetases (NRPS), giant megasynthases that activate and join individual amino acids in an assembly line fashion. Since NRPS are not limited to the incorporation of the 20 proteinogenic amino acids, their efficient manipulation would allow the biotechnological generation of complex peptides including linear, cyclic and further modified natural product analogues, e.g. to optimise natural product leads. Here we describe a detailed phylogenetic analysis of several bacterial NRPS that led to the identification of a new recombination breakpoint within the thiolation (T) domain that is important for natural NRPS evolution. From this, an evolution-inspired eXchange Unit between T domains (XUT) approach was developed which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.
Several clinically used drugs are derived from microorganisms that often produce them via non-ribosomal peptide synthetases (NRPS), giant megasynthases that activate and connect individual amino acids in an assembly line fashion. Since NRPS are not restricted to the incorporation of the 20 proteinogenic amino acids, their efficient manipulation would allow the biotechnological generation of several different peptides including linear, cyclic and further modified derivatives. Here we describe a detailed phylogenetic analysis of several bacterial NRPS that led to the identification of a new recombination breakpoint within the thiolation (T) domain important in natural NRPS evolution. From this an evolutionary-inspired eXchange Unit between T domains (XUT) approach was developed, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as was shown for the specific production of a proteasome inhibitor, designed and assembled from five different NRPS fragments.
Non-ribosomal peptide synthetases (NRPSs) are the origin of a wide range of natural products, including many clinically used drugs. Engineering of these often giant biosynthetic machineries to produce novel non-ribosomal peptides (NRPs) at high titre is an ongoing challenge. Here we describe a strategy to functionally combine NRPS fragments of Gram-negative and -positive origin, synthesising novel peptides at titres up to 290 mg l-1. Extending from the recently introduced definition of eXchange Units (XUs), we inserted synthetic zippers (SZs) to split single protein NRPSs into up to three independently expressed and translated polypeptide chains. These synthetic type of NRPS (type S) enables easier access to engineering, overcomes cloning limitations, and provides a simple and rapid approach to building peptide libraries via the combination of different NRPS subunits.
Bacterial biosynthetic assembly lines, such as non-ribosomal peptide synthetases (NRPS) and polyketide synthases, are often subject of synthetic biology – because they produce a variety of natural products invaluable for modern pharmacotherapy. Acquiring the ability to engineer these biosynthetic assembly lines allows the production of artificial non-ribosomal peptides (NRP), polyketides, and hybrids thereof with new or improved properties. However, traditional bioengineering approaches have suffered for decades from their very limited applicability and, unlike combinatorial chemistry, are stigmatized as inefficient because they cannot be linked to the high-throughput screening platforms of the pharmaceutical industry. Although combinatorial chemistry can generate new molecules cheaper, faster, and in greater numbers than traditional natural product discovery and bioengineering approaches, it does not meet current medical needs because it covers only a limited biologically relevant chemical space. Hence, methods for high-throughput generation of new natural product-like compound libraries could provide a new avenue towards the identification of new lead compounds. To this end, prior to this work, we introduced an artificial synthetic NRPS type, referred to as type S NRPS, to provide a first-of-its-kind bicombinatorial approach to parallelized high-throughput NRP library generation. However, a bottleneck of these first two generations of type S NRPS was a significant drop in production yields. To address this issue, we applied an iterative optimization process that enabled titer increases of up to 55-fold compared to the non-optimized equivalents, restoring them to wild-type levels and beyond.
Non-ribosomal peptide synthetases (NRPSs) are the origin of a wide range of natural products, including many clinically used drugs. Efficient engineering of these often giant biosynthetic machineries to produce novel non-ribosomal peptides (NRPs) is an ongoing challenge. Here we describe a cloning and co-expression strategy to functionally combine NRPS fragments of Gram-negative and -positive origin, synthesising novel peptides at titres up to 220 mg L−1. Extending from the recently introduced definition of eXchange Units (XUs), we inserted synthetic zippers (SZs) to split single protein NRPSs into independently expressed and translated polypeptide chains. These synthetic type of NRPS (type S) enables easier access to engineering, overcomes cloning limitations, and provides a simple and rapid approach to building peptide libraries via the combination of different NRPS subunits.
Analysis of whole cell lipid extracts of bacteria by means of ultra-performance (UP)LC-MS allows a comprehensive determination of the lipid molecular species present in the respective organism. The data allow conclusions on its metabolic potential as well as the creation of lipid profiles, which visualize the organism's response to changes in internal and external conditions. Herein, we describe: i) a fast reversed phase UPLC-ESI-MS method suitable for detection and determination of individual lipids from whole cell lipid extracts of all polarities ranging from monoacylglycerophosphoethanolamines to TGs; ii) the first overview of a wide range of lipid molecular species in vegetative Myxococcus xanthus DK1622 cells; iii) changes in their relative composition in selected mutants impaired in the biosynthesis of α-hydroxylated FAs, sphingolipids, and ether lipids; and iv) the first report of ceramide phosphoinositols in M. xanthus, a lipid species previously found only in eukaryotes.