Refine
Document Type
- Doctoral Thesis (1)
- Master's Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Contraction method (1)
- Digital trees (1)
- Markov model (1)
- Probabilistic analysis of algorithms (1)
- Radix sort (1)
Institute
- Mathematik (2)
Der Hoppe-Baum ist eine zufällig wachsende, diskrete Baumstuktur, wobei die stochastische Dynamik durch die Entwicklung der Hoppe Urne wie folgt gegeben ist: Die ausgezeichnete Kugel mit der die Hoppe Urne startet entspricht der Wurzel des Hoppe Baumes. In der Hoppe Urne wird diese Kugel mit Wahrscheinlichkeit proportional zu einem Parameter theta>0 gezogen, alle anderen Kugeln werden mit Wahrscheinlichkeit proportional zu 1 gezogen. Wann immer eine Kugel gezogen wird, wird sie zusammen mit einer neuen Kugel in die Urne zurückgelegt, was in unserem Baum dem Einfügen eines neuen Kindes an den gezogenen Knoten entspricht. Im Spezialfall theta=1 erhält man einen zufälligen rekursiven Baum.
In der Arbeit werden Erwartungswerte, Varianzen und Grenzwertsätze für Tiefe, Höhe, Pfadlänge und die Anzahl der Blätter gegeben.
This thesis covers the analysis of radix sort, radix select and the path length of digital trees under a stochastic input assumption known as the Markov model.
The main results are asymptotic expansions of mean and variance as well as a central limit theorem for the complexity of radix sort and the path length of tries, PATRICIA tries and digital search trees.
Concerning radix select, a variety of different models for ranks are discussed including a law of large numbers for the worst case behavior, a limit theorem for the grand averages model and the first order asymptotic of the average complexity in the quantile model.
Some of the results are achieved by moment transfer techniques, the limit laws are based on a novel use of the contraction method suited for systems of stochastic recurrences.