Refine
Document Type
- Article (10)
- Conference Proceeding (1)
- diplomthesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Anti-kaon–nucleon physics (1)
- Hyperons (1)
- Kaonic nuclei (1)
- Low energy QCD (1)
- Nucleus (1)
- Partial wave analysis (1)
- Proton (1)
- Strangeness (1)
- ppK − (1)
Institute
- Physik (13)
The study of meson production in proton-proton collisions in the energy range
up to one GeV above the production threshold provides valuable information about
the nature of the nucleon-nucleon interaction. Theoretical models describe the interaction
between nucleons via the exchange of mesons. In such models, different
mechanisms contribute to the production of the mesons in nucleon-nucleon collisions.
The measurement of total and differential production cross sections provide information
which can help in determining the magnitude of the various mechanisms.
Moreover, such cross section information serves as an input to the transport calculations
which describe e.g. the production of e+e− pairs in proton- and pion-induced
reactions as well as in heavy ion collisions.
In this thesis, the production of ω and η mesons in proton-proton collisions at 3.5
GeV beam energy was studied using the High Acceptance DiElectron Spectrometer
(HADES) installed at the Schwerionensynchrotron (SIS 18) at the Helmholtzzenturm
f¨ur Schwerionenforschung in Darmstadt.
About 80 000 ω mesons and 35 000 η mesons were reconstructed. Total production
cross sections of both mesons were determined. Furthermore, the collected statistics
allowed for extracting angular distributions of both mesons as well as performing
Dalitz plot studies.
The ω and η mesons were reconstructed via their decay into three pions (π+π−π0)
in the exclusive reaction pp −→ ppπ+π−π0. The charged particles were identified
via their characteristic energy loss, via the measurement of their time of flight and
momentum, or using kinematics.
The neutral pion was reconstructed using the missing mass method. A kinematic
fit was applied to improve the resolution and to select events in which a π0 was
produced.
The correction of measured yields for the effects of spectrometer acceptance was done
as a function of four variables (two invariant masses and two angles). Systematic
studies of the acceptance for different input distributions were performed.
The measured yields were normalized to the number of measured events of elastic
scattering. Systematic errors due to the methods of the data analysis and the
background subtraction were investigated.
Production angular distributions of ω and η mesons were measured. Both mesons
exhibit a slightly anisotropic angular distribution.
The Dalitz plot of ω meson production shows indications of resonant production.
However, the deviation of the distribution from the one expected by phase space
simulations is not large.
The Dalitz plot of η meson production shows a signal of the production via the
N(1535) resonance, The contribution of N(1535) to the production was quantified
to be about 47%. The angular distribution of η mesons does not show significant
differences between resonant and non resonant production.
The total production cross section of ω mesons in the reaction pp −→ ppω was
determined to be 106.5 ± 0.9 (stat) ± 7.9 (sys) [μb] where stat indicates statistical
error and sys indicates systematic error, while that of η mesons was determined to
be 136.9 ± 0.9 (stat) ± 10.1 (sys) [μb] in the reaction pp −→ ppη
Das HADES-Experiment (High Acceptance DiElectron Spectrometer) am SIS der GSI wurde zur Messung der e+e−-Paare dileptonischer Zerfälle der leichten Vektormesonen im Energiebereich von 1 − 2 AGeV entwickelt. Eine der Hauptanforderungen an das Spurverfolgungssystem des Spektrometers ist eine Ortsauflösung von 100 μm, die benötigt wird, um die geforderte Massenauflösung von 1 % im Bereich der !-Masse zu erzielen. Das Spurverfolgungssystem besteht aus vier Ebenen mit Vieldrahtdriftkammern (Multi-wire Drift Chambers (MDCs)) niedriger Massenbelegung (low-mass), die aus je 6 Auslesedrahtebenen bestehen. Die primäre Messgröße von Driftkammern ist die Driftzeit der entlang einer Teilchenspur generierten Elektronen der Primärionisation zum Auslesedraht. Um die gemessene Driftzeit in eine Ortskoordinate umrechnen zu können, ist eine genaue Kenntnis der Ort-Zeit-Korrelation der Driftzellen und eine präzise Kalibrierung der gemessenen Zeiten nötig. Im Rahmen dieser Arbeit wurde eine neue Methode zur Bestimmung der Kalibrierungsparameter der Driftzeiten mittels der Einkoppelung eines externen elektrischen Pulses auf die Drahtebenen der Driftkammern entwickelt und mit der herkömmlichen Methode der Kalibrierung verglichen. Zur Kalibrierung wurden elektrische Pulse durch die Hochspannungsverteilung der Driftkammern auf die Potentialdrahtebenen geleitet und somit Signale auf die Signaldrähte induziert. Die Ausbreitungsgeschwindigkeit der Signale auf den Drähten, die zur Berücksichtigung der Laufzeiten benötigt wird, wurde experimentell bestimmt. Die Genauigkeit der Methode zur Bestimmung der Kalibrierungsparameter übertrifft die Auflösung der Driftzeitmessung der Driftkammern. Die Kalibrierung der Driftzeiten benötigt nur wenig Rechen- und Zeitaufwand und stellt die Kalibrierungsparameter in gleich hoher Präzision für alle Driftzellen zur Verfügung. Die Qualität der Kalibrierung wird im Gegensatz zur herkömmlichen Methode prinzipbedingt nicht durch Fluktuationen der Startzeit des jeweiligen Stoßereignisses und die Flugzeit der dabei emittierten Teilchen zu den Driftzellen, sowie des elektronischen Rauschens beeinflusst. Die Qualität der Kalibrierung konnte gegenüber der herkömmlichen Methode signifikant verbessert werden. Die Auswirkung der Kalibrierungsparameter auf die Spurrekonstruktion wurde untersucht und für die beiden Kalibrierungsmethoden verglichen. Die Ergebnisse lassen keinen eindeutigen Schluss auf die Auswirkung der Fehler in der Kalibrierung auf die Qualität der Spurrekonstruktion zu, da die Ergebnisse der Spurrekonstruktion von anderen Effekten dominiert werden.
We present measurements of exclusive ensuremathπ+,0 and η production in pp reactions at 1.25GeV and 2.2GeV beam kinetic energy in hadron and dielectron channels. In the case of π+ and π0 , high-statistics invariant-mass and angular distributions are obtained within the HADES acceptance as well as acceptance-corrected distributions, which are compared to a resonance model. The sensitivity of the data to the yield and production angular distribution of Δ (1232) and higher-lying baryon resonances is shown, and an improved parameterization is proposed. The extracted cross-sections are of special interest in the case of pp → pp η , since controversial data exist at 2.0GeV; we find \ensuremathσ=0.142±0.022 mb. Using the dielectron channels, the π0 and η Dalitz decay signals are reconstructed with yields fully consistent with the hadronic channels. The electron invariant masses and acceptance-corrected helicity angle distributions are found in good agreement with model predictions.
n this paper we report on the investigation of baryonic resonance production in proton-proton collisions at the kinetic energies of 1.25 GeV and 3.5 GeV, based on data measured with HADES. Exclusive channels npπ+ and ppπ0 as well as ppe+e− were studied simultaneously in the framework of a one-boson exchange model. The resonance cross sections were determined from the one-pion channels for Δ(1232) and N(1440) (1.25 GeV) as well as further Δ and N* resonances up to 2 GeV/c2 for the 3.5 GeV data. The data at 1.25 GeV energy were also analysed within the framework of the partial wave analysis together with the set of several other measurements at lower energies. The obtained solutions provided the evolution of resonance production with the beam energy, showing a sizeable non-resonant contribution but with still dominating contribution of Δ(1232)P33. In the case of 3.5 GeV data, the study of the ppe+e− channel gave the insight on the Dalitz decays of the baryon resonances and, in particular, on the electromagnetic transition form-factors in the time-like region. We show that the assumption of a constant electromagnetic transition form-factors leads to underestimation of the yield in the dielectron invariant mass spectrum below the vector mesons pole. On the other hand, a comparison with various transport models shows the important role of intermediate ρ production, though with a large model dependency. The exclusive channels analysis done by the HADES collaboration provides new stringent restrictions on the parameterizations used in the models.
The knowledge of baryonic resonance properties and production cross sections plays an important role for the extraction and understanding of medium modifications of mesons in hot and/or dense nuclear matter. We present and discuss systematics on dielectron and strangeness production obtained with HADES on p+p, p+A and A+A collisions in the few GeV energy regime with respect to these resonances.
his contribution aims to give a basic overview of the latest results regarding the production of resonances in different collision systems. The results were extracted from experimental data collected with HADES that is a multipurpose detector located at the GSI Helmholtzzentrum, Darmstadt. The main points discussed here are: the properties of the strange resonances Λ(1405) and Σ(1385), the role of Δ’s as a source of pions in the final state, the production dynamics reflected in form of differential cross sections, and the role of the ϕ meson as a source for K− particles.
We present the results of two-pion production in tagged quasi-free np collisions at a deutron incident beam energy of 1.25 GeV/c measured with the High-Acceptance Di-Electron Spectrometer (HADES) installed at GSI. The specific acceptance of HADES allowed for the first time to obtain high-precision data on π+π− and π−π0 production in np collisions in a region corresponding to large transverse momenta of the secondary particles. The obtained differential cross section data provide strong constraints on the production mechanisms and on the various baryon resonance contributions (∆∆, N(1440), N(1520), ∆(1600)). The invariant mass and angular distributions from the np → npπ+π −and np → ppπ−π0 reactions are compared with different theoretical model predictions.
The production of Σ0 baryons in the nuclear reaction p (3.5 GeV) + Nb (corresponding to sNN=3.18 GeV) is studied with the detector set-up HADES at GSI, Darmstadt. Σ0s were identified via the decay Σ0→Λγ with subsequent decays Λ→pπ− in coincidence with a e+e− pair from either external (γ→e+e−) or internal (Dalitz decay γ⁎→e+e−) gamma conversions. The differential Σ0 cross section integrated over the detector acceptance, i.e. the rapidity interval 0.5<y<1.1, has been extracted as ΔσΣ0=2.3±(0.2)stat±(−0.6+0.6)sys±(0.2)norm mb, yielding the inclusive production cross section in full phase space σΣ0total=5.8±(0.5)stat±(−1.4+1.4)sys±(0.6)norm±(1.7)extrapol mb by averaging over different extrapolation methods. The Λall/Σ0 ratio within the HADES acceptance is equal to 2.3±(0.2)stat±(−0.6+0.6)sys. The obtained rapidity and momentum distributions are compared to transport model calculations. The Σ0 yield agrees with the statistical model of particle production in nuclear reactions. Keywords: Hyperons, Strangeness, Proton, Nucleus.
Partial wave analysis of the reaction p(3.5 GeV) + p → pK +Λ to search for the "ppK−" bound state
(2015)
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5 GeV) + p → pK +Λ. This reaction might contain information about the kaonic cluster “ppK −” (with quantum numbers J P = 0− and total isospin I = 1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical KNN (or, specifically “ppK −”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a KNN cluster. At a confidence level of CLs = 95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK +Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.
Many QCD based and phenomenological models predict changes of hadron properties in a strongly interacting environment. The results of these models differ significantly and the experimental determination of hadron properties in nuclear matter is essential. In this paper we present a review of selected physics results obtained at GSI Helmholtzzentrum für Schwerionenforschung GmbH by HADES (High-Acceptance Di-Electron Spectrometer). The e+e− pair emission measured for proton and heavy-ion induced collisions is reported together with results on strangeness production. The future HADES activities at the planned FAIR facility are also discussed.