• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Quednow, Kristin (2)
  • Botzat, Alexandra (1)
  • Magdeburg, Axel (1)
  • Oehlmann, Jörg (1)
  • Stalter, Daniel (1)

Year of publication

  • 2008 (1)
  • 2013 (1)

Document Type

  • Article (1)
  • Doctoral Thesis (1)

Language

  • English (2)

Has Fulltext

  • yes (2)

Is part of the Bibliography

  • no (2)

Keywords

  • Alkylphenole (1)
  • Fließgewässer (1)
  • Micropollutants (1)
  • Persistenter organischer Schadstoff (1)
  • Umweltanalytik (1)
  • river (1)
  • water (1)

Institute

  • Geowissenschaften (2)
  • Institut für Ökologie, Evolution und Diversität (1)

2 search hits

  • 1 to 2
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Xenobiotics in freshwater streams of Hesse, Germany (2008)
Quednow, Kristin
The present study was elaborated within the scope of the INTAFERE (Integrated Analysis of Mobile Organic Foreign Substances in Rivers) project which investigates the occurrence of xenobiotics in small freshwater streams with particular consideration of social impact factors. The aim of this study is to investigate the seasonal and spatial variance of organic micropollutants in small fresh water streams and to identify possible sources and sinks. Therefore four small freshwater river systems in Hesse, Germany, have been investigated with respect to common organic pollutants such as: the organophosphates tri-n-butyl phosphate (TBP), tris(2-butoxyethyl)phosphate (TBEP), tris(2-chloroethyl)phosphate (TCEP), tris(1-chloro-2-propyl)phosphate (TCPP), and tris(1,3-dichloro-2-propyl)phosphate (TDCPP), the synthetic musk fragrances 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-[g]-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), the endocrine disruptors bisphenol A (BPA), 4-tert-octylphenol (OP) and the technical isomer mixture of 4-nonylphenol (NP), the herbicide terbutryn [2-(t-butylamino)-4-(ethylamino)-6-(methylthio)-s-triazine] as well as the insect repellent N,N-diethyl-m-toluamide (DEET). Water samples were collected in the time span from September 2003 to September 2006 at 26 sampling locations. The samples were extracted with solid phase extraction (SPE) and analyzed by coupled gas chromatography-mass spectrometry (GC-MS). For quantification the internal standard method was used. The results of the study showed an ubiquitous occurrence of organic pollutants in the fresh water streams of the study area. The organophosphates have been detected in 90 % of the water samples with mean concentrations of 502 ng/l (TCPP), 276 ng/l (TBP), 183 ng/l (TBEP), 118 ng/l (TCEP) and 117 ng/l (TDCPP). Sewage treatment plant (STP) effluents were identified as the dominating source for the chlorinated organophosphates as well as for the synthetic musk fragrances and the insect repellent DEET in the river systems. Consequently the highest concentrations were observed in the Schwarzbach system characterized by the highest proportion of waste water compared to the other river systems. Mean concentration levels of the synthetic musk fragrances HHCB and ATHN were 141 ng/l and 46 ng/l, respectively and 124 ng/l in case of DEET. The synthetic musk fragrances showed a clear seasonal trend with significantly lower concentrations in summer times compared to winter times, which is ascribed to stronger photodegradation and volatization during summer times. In contrast, mean DEET concentrations and loads were significantly higher in summer than in autumn, winter and spring, in parallel with the main insect season. The concentrations of the endocrine disruptors BPA, NP and OP in the river water samples ranged from <20 ng/l to 1927 ng/l, <10 ng/l to 770 ng/l, and <10 ng/l to 420 ng/l, respectively. Whereas OP was present in about 2/3 of the samples, NP and BPA could only be detected in 56% and 13% of the water samples, respectively. BPA levels exceeded in two samples the predicted no-effect concentration (PNEC) for water organisms. In case of NP, highest concentrations and loads were found in September 2003 and decreased significantly since then. In contrast, concentrations and loads of OP which serves in a similar application field remained nearly constant during the sampling period. The decrease of NP can be attributed to the implementation of the European Directive 2003/53/EG, which restricts the use of nonylphenols and nonylphenol ethoxylates since January 2005. However, at the end of the sampling period in September 2006, NP could still be detected at mean concentrations of 18 ng/l in the river waters of the sampling area. Furthermore, absence of NP in several samples from associated STP effluents indicate that the STPs cannot be the only sources for NP found in the river water. The herbicide terbutryn was present in the rivers during the whole sampling period from September 2003 to September 2006 despite a ban on its use as a herbicide from January 2004 on. Terbutryn levels ranged from < 4 ng/l to 5600 ng/l, showing a clear spatial pattern with high terbutryn concentrations in the Weschnitz and Modau river systems and significantly lower terbutryn levels in Schwarzbach and Winkelbach. Results from the analysis of two STP effluents discharging into the Weschnitz and the Modau, respectively, indicate that terbutryn enters the rivers from this source. Furthermore, terbutryn concentrations and loads showed a clear seasonal trend with significantly higher levels in summer and autumn. Obviously, the ban on agricultural use of terbutryn at the end of 2003 had no discernable influence on terbutryn concentration in the rivers because there was no trend of decreasing.
Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters? (2013)
Stalter, Daniel ; Magdeburg, Axel ; Quednow, Kristin ; Botzat, Alexandra ; Oehlmann, Jörg
Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive.
  • 1 to 2

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks