Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Cytochrome c Oxidase (2)
- Absorptionsspektroskopie (1)
- Bioenergetics (1)
- Cytochrome Oxidase (1)
- Cytochromoxidase (1)
- Electron transfer (1)
- Elektronentransfer (1)
- Indikator (1)
- Kinetics (1)
- Proton Transfer Kinetics (1)
Institute
Cytochrome c oxidase (COX), the last enzyme of the respiratory chain of aerobic organisms, catalyzes the reduction of molecular oxygen to water. It is a redox-linked proton pump, whose mechanism of proton pumping has been controversially discussed, and the coupling of proton and electron transfer is still not understood. Here, we investigated the kinetics of proton transfer reactions following the injection of a single electron into the fully oxidized enzyme and its transfer to the hemes using time-resolved absorption spectroscopy and pH indicator dyes. By comparison of proton uptake and release kinetics observed for solubilized COX and COX-containing liposomes, we conclude that the 1-μs electron injection into CuA, close to the positive membrane side (P-side) of the enzyme, already results in proton uptake from both the P-side and the N (negative)-side (1.5 H+/COX and 1 H+/COX, respectively). The subsequent 10-μs transfer of the electron to heme a is accompanied by the release of 1 proton from the P-side to the aqueous bulk phase, leaving ∼0.5 H+/COX at this side to electrostatically compensate the charge of the electron. With ∼200 μs, all but 0.4 H+ at the N-side are released to the bulk phase, and the remaining proton is transferred toward the hemes to a so-called “pump site.” Thus, this proton may already be taken up by the enzyme as early as during the first electron transfer to CuA. These results support the idea of a proton-collecting antenna, switched on by electron injection.
Die vorliegende Arbeit befaßte sich mit der Untersuchung der Protonenbewegung während des O-E Schrittes im katalytischen Zyklus der Cytochrom-c-Oxidase von P. denitrificans. Die Zuordnung der Protonenbewegung zu den einzelnen Schritten des katalytischen Zyklus der Cytochrom-c-Oxidase ist immer noch ein Gegenstand zahlreicher Kontroversen. Obwohl von Ruitenberg et al. (2000) durch Spannungsmessungen gezeigt wurde, daß die Reduktion von Häm a während des ersten Elektrontransfers in das oxidierte Enzyme eine schnelle Protonenaufnahme von der gegenüberliegenden Seite der Membran bewirkt, wurden diese Ergebnisse angezweifelt. Daher sollte mit einer unabhängigen und direkten Methode herausgefunden werden, ob Protonen bereits während des ersten Schrittes des katalytischen Zyklus aufgenommen werden. Dazu wurde ns-zeitaufgelöste Blitzlicht-Absorptionsspektroskopie in Kombination mit pH-sensitiven Farbstoffen genutzt, und zwar sowohl mit Fluorescein kovalent an der Proteinoberfläche gebunden als auch mit Phenolrot löslich im Medium vorliegend. Zur kovalenten Kopplung von thiolreaktiven Farbstoffen mußten zuerst die nötigen Voraussetzungen geschaffen werden. Dazu wurde in dieser Arbeit ein Mutagenesesystems für sowohl Untereinheit I als auch Untereinheit II etabliert und eine oberflächencysteinfreie Variante und elf Einzelcystein-Varianten hergestellt, exprimiert und aufgereinigt sowie die Enzymaktivitäten überprüft. Danach wurde ein Protokoll zur Kopplung der Einzelcysteinvarianten mit Iodoacetamidfluoresein ausgearbeitet und die Varianten Fluorescein-markiert. Dabei zeigte es sich, daß nur sieben Varianten erfolgreich mit IAF reagierten. Mittels dieser AF-markierten Varianten konnte die Pufferkapazität an der Oberfläche der Cytochrom-c-Oxidase bestimmt werden. Es zeigte sich, daß die Pufferkapazität des Enzyms in Lösung im Vergleich zu Bakteriorhodopsin dreimal so groß ist, an der Oberfläche sogar 10-15mal so groß. Dies deutet auf eine hohe Anzahl protonierbarer Gruppen um die für die Markierung ausgewählten Aminosäuren im Bereich der Eintrittsstellen der Protonen hin. Die gezielte Übertragung eines Elektrons auf die Cytochrom-c-Oxidase erfolgte durch Licht anregbare Rutheniumkomplexe. In unserem Meßsystem war die Elektronentransfereffizienz von [Ruthenium(2,2‘-bipyridin)2]2quarterpyridin am höchsten. Nach einer sorgfältigen Optimierung der Meßbedingungen wie pH-Wert, Ionenstärke und Energie des Lasers konnte eine 10-15 %ige Reduktion von Häm a mit einer Zeitkonstanten von t = 13,7 ± 2,4 µs nachgewiesen werden. Die Protonenkonzentrationsänderungen im Medium konnten durch Phenolrot verfolgt werden. Durch den Vergleich von Funktionsvarianten, bei denen jeweils einer oder beide Protoneneingangswege blockiert sind, konnte ein Modell für die Protonenaufnahme und -abgabe während der Einelektronen-Reduktion der Cytochrom-c-Oxidase entwickelt werden. Dies konnte durch Messungen an in Liposomen inkorporierter wt Cytochrom-c-Oxidase verifiziert werden. Die Nettoprotonenaufnahme von der N-Seite der Cytochrom-c-Oxidase beträgt somit 0,3 H+ für das im O-E Schritt aufgenommene Elektron. Die Variante CS-I302C-AF wurde dazu genutzt, die Oberflächenladungsdichte an der N-Seite der Cytochrom-c-Oxidase zu bestimmen. Die Oberflächenladungsdichte auf der N-Seite des Enzyms in der Nähe zum Eingang des K-Wegs ist negativ und beträgt 0,5 e-/1000 Å2.