Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- BESIII (1)
- Branching fractions (1)
- Dark photon (1)
- Dark sector (1)
- Invisible decays (1)
- Semi-leptonic decays (1)
- Λ+c baryon (1)
Institute
Streamer chamber data for collisions of Ar + KCl and Ar + BaI2 at 1.2 GeV/nucleon are compared with microscopic model predictions based on the Vlasov-Uehling-Uhlenbeck equation, for various density-dependent nuclear equations of state. Multiplicity distributions and inclusive rapidity and transverse momentum spectra are in good agreement. Rapidity spectra show evidence of being useful in determining whether the model uses the correct cross sections for binary collisions in the nuclear medium, and whether momentum-dependent interactions are correctly incorporated. Sideward flow results do not favor the same nuclear stiffness parameter at all multiplicities.
We search for an axion-like particle (ALP) a through the process ψ(3686)→π+π−J/ψ, J/ψ→γa, a→γγ in a data sample of (2.71±0.01)×109 ψ(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψ→γa and the ALP-photon coupling constant gaγγ are set at 95% confidence level in the mass range of 0.165≤ma≤2.84GeV/c2. The limits on B(J/ψ→γa) range from 8.3×10−8 to 1.8×10−6 over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165≤ma≤1.468GeV/c2.
We search for the semi-leptonic decays Λ + c → Λπ+π−e+νe and Λ + c → pK0 Sπ−e+νe in a sample of 4.5 fb−1 of e+e− annihilation data collected in the center-of-mass energy region between 4.600 GeV and 4.699 GeV by the BESIII detector at the BEPCII. No significant signals are observed, and the upper limits on the decay branching fractions are set to be B(Λ+c → Λπ+π−e+νe ) < 3.9 × 10−4 and B(Λ + c → pK0Sπ−e+νe ) < 3.3 × 10−4 at the 90% confidence level, respectively.
We report a search for a dark photon using 14.9~fb−1 of e+e− annihilation data taken at center-of-mass energies from 4.13 to 4.60~GeV with the BESIII detector operated at the BEPCII storage ring. The dark photon is assumed to be produced in the radiative annihilation process of e+e− and to predominantly decay into light dark matter particles, which escape from the detector undetected. The mass range from 1.5 to 2.9~GeV is scanned for the dark photon candidate, and no significant signal is observed. The mass dependent upper limits at the 90% confidence level on the coupling strength parameter ϵ for a dark photon coupling with an ordinary photon vary between 1.6×10−3 and 5.7×10−3.