Refine
Document Type
- Conference Proceeding (6)
- Doctoral Thesis (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- lattice (1)
- particle physics (1)
- quantum chromodynamics (1)
- quark gluon plasma (1)
- thermal transition (1)
Institute
Subject of this thesis is the non-perturbative investigation of the thermal transition in Quantum Chromodynamics by means of lattice gauge theory and a particular type of lattice fermions, the so-called twisted mass fermions. These fermions offer the possibility of improvement as compared to the standard Wilson-type formulation. We investigate the properties of these fermions at finite temperature, i.e. the structure of the bare parameter space as well as leading order cutoff effects in the weak coupling limit. Then we focus on two-flavour simulations at finite pion mass. We identify the (pseudo-)critical temperatures for our set of pion masses (300 to 500 MeV) and discuss the extrapolation to the chiral limit for which the nature of the transition is still an open question. Besides pseudo-critical temperatures we consider the magnetic equation of state and screening observables. We find that the assumption of a second order transition (in the 3d O(4) universality class) agrees with our data without being able to exclude alternatives. Finally, we discuss the future inclusion of strange and charm quarks in dynamical twisted mass simulations and look at the corresponding cutoff effects in the free limit.
We report progress in our exploration of the finite-temperature phase structure of two-flavour lattice
QCD with twisted-mass Wilson fermions and a tree-level Symanzik-improved gauge action
for a temporal lattice size Nt = 8. Extending our investigations to a wider region of parameter
space we gain a global view of the rich phase structure. We identify the finite temperature transition/
crossover for a non-vanishing twisted-mass parameter in the neighbourhood of the zerotemperature
critical line at sufficiently high b . Our findings are consistent with Creutz’s conjecture
of a conical shape of the finite temperature transition surface. Comparing with NLO lattice
cPT we achieve an improved understanding of this shape.
Pseudo-Critical Temperature and Thermal Equation of State from Nf = 2 Twisted Mass Lattice QCD
(2012)
We report about the current status of our ongoing study of the chiral limit of two-flavor QCD at finite temperature with twisted mass quarks. We estimate the pseudo-critical temperature Tc for three values of the pion mass in the range of mPS ~ 300 and 500 MeV and discuss different chiral scenarios. Furthermore, we present first preliminary results for the trace anomaly, pressure and energy density. We have studied several discretizations of Euclidean time up to Nt = 12 in order to assess the continuum limit of the trace anomaly. From its interpolation we evaluate the pressure and energy density employing the integral method. Here, we have focussed on two pion masses with mPS ~ 400 and 700 MeV.
LatticeQCD using OpenCL
(2011)
A lot of effort in lattice simulations over the last years has been devoted to studies of the QCD deconfinement transition. Most state-of-the-art simulations use rooted staggered fermions, while Wilson fermions are affected by large systematic uncertainties, such as coarse lattices or heavy sea quarks. Here we report on an ongoing study of the transition, using two degenerate flavours of nonperturbatively O(a) improved Wilson fermions. We start with Nt = 12 and 16 lattices and pion masses of 600 to 450 MeV, aiming at chiral and continuum limits with light quarks.
We discuss the use of Wilson fermions with twisted mass for simulations of QCD thermodynamics. As a prerequisite for a future analysis of the finite-temperature transition making use of automatic O(a) improvement, we investigate the phase structure in the space spanned by the hopping parameter k , the coupling b , and the twisted mass parameter m. We present results for Nf = 2 degenerate quarks on a 163×8 lattice, for which we investigate the possibility of an Aoki phase existing at strong coupling and vanishing m, as well as of a thermal phase transition at moderate gauge couplings and non-vanishing m.