Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
- Master's Thesis (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Namibia (2)
- Bayesian network (1)
- Climate change (1)
- Material Flow Analysis (1)
- Multi-model ensemble (1)
- Participatory process (1)
- Rainwater Harvesting (1)
- Risk assessment (1)
- Roadmap (1)
- Sustainability Evaluation (1)
In situ rainwater harvesting has a long history in arid and semi-arid regions of the world buffering water shortages for human consumption and agriculture. In the context of an Integrated Water Resource Management (IWRM) in the Cuvelai Basin in northern Namibia, roof top rainwater harvesting is being introduced to a rural community for the irrigation of household scale gardens for the cultivation of horticulture products. This study elaborates how harvested rainwater can be used for garden irrigation in a sustainable manner evaluating ecologic, economic and social implications. Considering local conditions eight cropping scenarios were designed, including different criteria as well as one and two annual planting seasons. These schemes were tested under present climate conditions and under three future climate change scenarios for 2050 with the help of a tank model designed to model monthly tank inflows and outflows. Special attention was laid on risk and uncertainty aspects of varying inter-annual and interseasonal precipitation and future climate change. A framework for the assessment of sustainability was adapted to the purposes of this study and indicators have been developed in order to assess the cropping and irrigation schemes for sustainability.
The study found that with the given tank size of 30 m³, depending on crop scenario, under optimized conditions a garden area of 60 to 90 m³ can be irrigated. The choice of crops highly impacts water use efficiency and economic profitability, compared to the considerably lower impact of amount of annual planting seasons and future climate change. In the case of worsening future climate conditions, adaptation measures need to be taken as especially the economic as well as the environmental situation are expected to exacerbate due to expected decreases in yields and revenues. Already under present conditions however, the economic dimension represents the most limiting factor to sustainability, particularly due to the excessive investment costs of the rainwater harvesting and gardening facility. Nonetheless, rainwater harvesting in combination with gardening can be regarded as successful in securing household nutrition, providing sufficient horticulture products for household consumption or market sale. At the same time with the optimal choice of crops the investment costs can be recovered within the end of the lifespan of the facility.
The design of rainwater harvesting based gardens requires considering current climate but also climate change during the lifespan of the facility. The goal of this study is to present an approach for designing garden variants that can be safely supplied with harvested rainwater, taking into account climate change and adaptation measures. In addition, the study presents a methodology to quantify the effects of climate change on rainwater harvesting based gardening. Results of the study may not be accurate due to the assumptions made for climate projections and may need to be further refined. We used a tank flow model and an irrigation water model. Then we established three simple climate scenarios and analyzed the impact of climate change on harvested rain and horticulture production for a semi-arid region in northern Namibia. In the two climate scenarios with decreased precipitation and medium/high temperature increase; adaptation measures are required to avoid substantial decreases in horticulture production. The study found that the most promising adaptation measures to sustain yields and revenues are a more water efficient garden variant and an enlargement of the roof size. The proposed measures can partly or completely compensate the negative impacts of climate change.
Water is scarce in semi-arid and arid regions. Using alternative water sources (i.e. non-conventional water sources), such as municipal reuse water and harvested rain, contributes to using existing water resources more efficiently and productively. The aim of this study is to evaluate the two alternative water sources reuse water and harvested rain for the irrigation of small-holder agriculture from a system perspective. This helps decision and policy makers to have proper information about which system and technology to adopt under local conditions. For this, the evaluation included ecologic, societal, economic, institutional and political as well as technical aspects. For the evaluation, the study area in central-northern Namibia was chosen in the frame of the research and development project CuveWaters. The main methods used include a mathematical material flow analysis, the computation and modelling of crop requirements, a multi-criteria decision analysis using the Analytical Hierarchy Process (AHP) method and a financial cost-benefit analysis. From a systemic perspective, the proposed novel systems were compared to the exciting conventional infrastructure. The results showed that both water reuse and rainwater harvesting systems for the irrigation of small-holder horticulture offer numerous technological, ecologic, economic, societal, institutional and political benefits. Rainwater harvesting based gardens have a positive benefit-cost ratio under favorable conditions. Government programs could fund the infrastructure investment costs, while the micro-entrepreneur can assume a micro-credit to finance operation and maintenance costs. Installing sanitation in informal settlements and reusing municipal water for irrigation reduces the overall water demand of households and agriculture by 39%, compared to improving sanitation facilities in informal settlements without reusing the water for agriculture. Given that water is the limiting factor for crop fertigation, the generated nutrient-rich reuse water is sufficient to annually irrigate about 10 m2 to 13 m2 per sanitation user. Compared to crop nutrient requirements, there are too many nutrients in the reuse water. Thus when using nutrient-rich reuse water, no use of fertilizers and a careful salt management is necessary. When comparing this novel system with improved sanitation, advanced wastewater treatment and nutrient-rich water reuse to the conventional and to two adapted systems, results showed that the novel CuveWaters system is the best option for the given context in a semi-arid developing country. Therefore, the results of this study suggest a further roll-out of the novel CuveWaters system. The methodology developed and the results of this study demonstrated that taking sanitation users into consideration plays a major role for the planning of an integrated water reuse infrastructure because they are the determinant factor for the amount of available nutrient-rich reuse water. In addition, it could be shown that water reuse and rainwater harvesting systems for the irrigation of small-scale gardens provide a wide range of benefits and can be key to using scarce water resources more efficiently and to contributing to the Sustainable Development Goals.
Local climate change risk assessments (LCCRAs) are best supported by a quantitative integration of physical hazards, exposures and vulnerabilities that includes the characterization of uncertainties. We propose to use Bayesian Networks (BNs) for this task and show how to integrate freely-available output of multiple global hydrological models (GHMs) into BNs, in order to probabilistically assess risks for water supply. Projected relative changes in hydrological variables computed by three GHMs driven by the output of four global climate models were processed using MATLAB, taking into account local information on water availability and use. A roadmap to set up BNs and apply probability distributions of risk levels under historic and future climate and water use was co-developed with experts from the Maghreb (Tunisia, Algeria, Morocco) who positively evaluated the BN application for LCCRAs. We conclude that the presented approach is suitable for application in the many LCCRAs necessary for successful adaptation to climate change world-wide.