Refine
Year of publication
Language
- English (65)
Has Fulltext
- yes (65)
Is part of the Bibliography
- no (65)
Keywords
- Polarization (2)
- Canonical suppression (1)
- Charged-particle multiplicity (1)
- Charmonia (1)
- Di-hadron correlations (1)
- Elastic scattering (1)
- Flow (1)
- Heavy-ion (1)
- Interference fragmentation function (1)
- Multiple parton interactions (1)
Institute
Midrapidity open charm spectra from direct reconstruction of D0(D0-bar)-->K± pi ± in d+Au collisions and indirect electron-positron measurements via charm semileptonic decays in p+p and d+Au collisions at sqrt[sNN]=200 GeV are reported. The D0(D0-bar) spectrum covers a transverse momentum (pT) range of 0.1<pT<3 GeV/c, whereas the electron spectra cover a range of 1<pT<4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at midrapidity for open charm production from d+Au collisions at BNL RHIC is d sigma NNcc-bar/dy=0.30±0.04(stat)±0.09(syst) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). In 5-30% central collisions a sizable difference is present between the v1(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v1 for both pions and protons, none of them can describe v1(y) for pions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). The proton v1(y) slope is found to be much closer to zero compared to antiprotons. A sizable difference is seen between v1 of protons and antiprotons in 5-30% central collisions. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. Anti-flow alone cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy √s=200 GeV in elastic proton–proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003⩽|t|⩽0.035 (GeV/c)2, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this √s, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton–proton elastic scattering.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
The pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at sqrt[sNN ]=200 GeV are presented. The charged particle density at midrapidity, its pseudorapidity asymmetry, and centrality dependence are reasonably reproduced by a multiphase transport model, by HIJING, and by the latest calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward pseudorapidity are above unity for pT below 5 GeV/c . The ratio of central to peripheral spectra in d+Au collisions shows enhancement at 2< pT <6 GeV/c , with a larger effect at backward rapidity than forward rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations based on incoherent multiple partonic scatterings.
The short-lived K(892)* resonance provides an efficient tool to probe properties of the hot and dense medium produced in relativistic heavy-ion collisions. We report measurements of K* in sqrt[sNN]=200GeV Au+Au and p+p collisions reconstructed via its hadronic decay channels K(892)*0-->K pi and K(892)*±-->K0S pi ± using the STAR detector at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The K*0 mass has been studied as a function of pT in minimum bias p+p and central Au+Au collisions. The K*pT spectra for minimum bias p+p interactions and for Au+Au collisions in different centralities are presented. The K*/K yield ratios for all centralities in Au+Au collisions are found to be significantly lower than the ratio in minimum bias p+p collisions, indicating the importance of hadronic interactions between chemical and kinetic freeze-outs. A significant nonzero K*0 elliptic flow (v2) is observed in Au+Au collisions and is compared to the K0S and Lambda v2. The nuclear modification factor of K* at intermediate pT is similar to that of K0S but different from Lambda . This establishes a baryon-meson effect over a mass effect in the particle production at intermediate pT (2<pT <= 4GeV/c).
Correlations in the hadron distributions produced in relativistic Au+Au collisions are studied in the discrete wavelet expansion method. The analysis is performed in the space of pseudorapidity (| eta | <= 1) and azimuth(full 2 pi ) in bins of transverse momentum (pt) from 0.14 <= pt <= 2.1GeV/c. In peripheral Au+Au collisions a correlation structure ascribed to minijet fragmentation is observed. It evolves with collision centrality and pt in a way not seen before, which suggests strong dissipation of minijet fragmentation in the longitudinally expanding medium.
The results from the STAR Collaboration on directed flow (v1), elliptic flow (v2), and the fourth harmonic (v4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrt[sNN]=200GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a blast-wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v2, scaling with the number of constituent quarks and parton coalescence are discussed. For v4, scaling with v22 and quark coalescence are discussed.