Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame.
Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone and the perturbed water distribution in the TTL is illustrated and discussed.
Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth´s atmosphere. Individual UTTCs may exist for many hours as an only 200--300 m thick cloud layer just a few hundred meters below the tropical cold point tropopause, covering up to 105 km2. With temperatures as low as 181 K these clouds are prime representatives for defining the water mixing ratio of air entering the lower stratosphere.
Mechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10-4 have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200-300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1-5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work suggests a mechanism, which forces the particles into a thin layer, based on upwelling of the air of some mm/s to balance the ice particles, supersaturation with respect to ice above and subsaturation below the UTTC. In situ measurements suggest that these requirements are fulfilled. The basic physical properties of this mechanism are explored by means of a single particle model. Comprehensive 1-D cloud simulations demonstrate this stabilization mechanism to be robust against rapid temperature fluctuations of +/- 0.5 K. However, rapid warming (Delta T > 2 K) leads to evaporation of the UTTC, while rapid cooling (Delta T < -2 K) leads to destabilization of the particles with the potential for significant dehydration below the cloud
Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth's atmosphere. Individual UTTCs may exist for many hours as an only 200–300 m thick cloud layer just a few hundred meters below the tropical cold point tropopause, covering up to 105 km2. With temperatures as low as 181 K these clouds are prime representatives for defining the water mixing ratio of air entering the lower stratosphere.
Mechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10−4 have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200–300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1–5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work suggests a mechanism, which forces the particles into a thin layer, based on upwelling of the air of some mm/s to balance the ice particles, supersaturation with respect to ice above and subsaturation below the UTTC. In situ measurements suggest that these requirements are fulfilled. The basic physical properties of this mechanism are explored by means of a single particle model. Comprehensive 1-D cloud simulations demonstrate this stabilization mechanism to be robust against rapid temperature fluctuations of +/−0.5 K. However, rapid warming (ΔT>2 K) leads to evaporation of the UTTC, while rapid cooling (ΔT<−2 K) leads to destabilization of the particles with the potential for significant dehydration below the cloud.
During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame. Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone was observed and perturbed water distribution in the TTL was documented. The paper discuss possible processes of dehydration induced by the cirrus forming above the cyclone, and change in the chemical tracer and water distribution in the lower stratosphere 400–430 K due to meridional transport from the mid-latitudes and link with Davina. Moreover it compares the data prior and after the cyclone passage to discuss its actual impact on the atmospheric chemistry and thermodynamics.