Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- leukemia (2)
- CAM (1)
- HSPC (1)
- RUNX1/ETO (1)
- adhesion (1)
- epigenetics (1)
- integrin (1)
- oncogene (1)
- stem/progenitor cell expansion (1)
Institute
- Medizin (4)
- Georg-Speyer-Haus (2)
- Biowissenschaften (1)
- Pharmazie (1)
Aberrant epigenetic regulators control expansion of human CD34+ hematopoietic stem/progenitor cells
(2013)
Transcription is a tightly regulated process ensuring the proper expression of numerous genes regulating all aspects of cellular behavior. Transcription factors regulate multiple genes including other transcription factors that together control a highly complex gene network. The transcriptional machinery can be “hijacked” by oncogenic transcription factors, thereby leading to malignant cell transformation. Oncogenic transcription factors manipulate a variety of epigenetic control mechanisms to fulfill gene regulatory and cell transforming functions. These factors assemble epigenetic regulators at target gene promoter sequences, thereby disturbing physiological gene expression patterns. Retroviral vector technology and the availability of “healthy” human hematopoietic CD34+ progenitor cells enable the generation of pre-leukemic cell models for the analysis of aberrant human hematopoietic progenitor cell expansion mediated by leukemogenic transcription factors. This review summarizes recent findings regarding the mechanism by which leukemogenic gene products control human hematopoietic CD34+ progenitor cell expansion by disrupting the normal epigenetic program.
Background Transplantation of vasculogenic progenitor cells (VPC) improves neovascularization after ischemia. However, patients with type 2 diabetes mellitus show a reduced VPC number and impaired functional activity. Previously, we demonstrated that p38 kinase inhibition prevents the negative effects of glucose on VPC number by increasing proliferation and differentiation towards the endothelial lineage in vitro. Moreover, the functional capacity of progenitor cells is reduced in a mouse model of metabolic syndrome including type 2 diabetes (Leprdb) in vivo. Findings The aim of this study was to elucidate the underlying signalling mechanisms in vitro and in vivo. Therefore, we performed DNA-protein binding arrays in the bone marrow of mice with metabolic syndrome, in blood-derived progenitor cells of diabetic patients as well as in VPC ex vivo treated with high levels of glucose. The transcriptional activation of ETS transcription factors was increased in all samples analyzed. Downregulation of ETS1 expression by siRNA abrogated the reduction of VPC number induced by high-glucose treatment. In addition, we observed a concomitant suppression of the non-endothelial ETS-target genes matrix metalloproteinase 9 (MMP9) and CD115 upon short term lentiviral delivery of ETS-specific shRNAs. Long term inhibition of ETS expression by lentiviral infection increased the number of cells with the endothelial markers CD144 and CD105. Conclusion These data demonstrate that diabetes leads to dysregulated activation of ETS, which blocks the functional activity of progenitor cells and their commitment towards the endothelial cell lineage.
Numerous cell–cell and cell–matrix interactions within the bone marrow microenvironment enable the controlled lifelong self-renewal and progeny of hematopoietic stem and progenitor cells (HSPCs). On the cellular level, this highly mutual interaction is granted by cell adhesion molecules (CAMs) integrating differentiation, proliferation, and pro-survival signals from the surrounding microenvironment to the inner cell. However, cell–cell and cell–matrix interactions are also critically involved during malignant transformation of hematopoietic stem/progenitor cells. It has become increasingly apparent that leukemia-associated gene products, such as activated tyrosine kinases and fusion proteins resulting from chromosomal translocations, directly regulate the activation status of adhesion molecules, thereby directing the leukemic phenotype. These observations imply that interference with adhesion molecule function represents a promising treatment strategy to target pre-leukemic and leukemic lesions within the bone marrow niche. Focusing on myeloid leukemia, we provide a current overview of the mechanisms by which leukemogenic gene products hijack control of cellular adhesion to subsequently disturb normal hematopoiesis and promote leukemia development.
Haematopoietic stem cells (HSCs) are regarded as the prime target for gene therapy of inherited and acquired disorders of the blood system, e.g. X-linked chronic granulomatous disease (X-CGD). The major reason for this is that HSCs posses the ability to self renew as well as the potential to differentiate into all lineage-specific cell types. However, the need to reach and to maintain sufficient therapeutic levels of genetically modified stem cells and their progeny after gene delivery still presents major challenges for current HSC gene therapy approaches. In particular, one of the main limitations for most genetic defects is the lack of a selective growth advantage of gene-modified cells after engraftment. In vitro and in vivo methods have been developed that focus on either positive or negative selection of HSCs. An artificial selection advantage can be conferred to transduced HSCs by incorporating a selection marker in addition to the therapeutic transgene. In the present study, two novel strategies for positive selection of murine gp91phox gene-modified haematopoietic stem cells were developed and tested, bearing in mind that with selective growth advantage, the possibility of uncontrolled proliferation arises. The first strategy to be investigated was based on the homeobox transcription factor HOXB4, which plays an important role in the control of haematopoietic stem cell proliferation and differentiation. Overexpression of a retroviral bicistronic construct containing the therapeutic gene gp91phox and HOXB4 in murine primary bone marrow cells led to a significant 3–4-fold expansion of transduced cells ex vivo. The numbers of transgene-expressing cells increased 2–3-fold after 2 weeks cultivation under cytokine stimulation. Furthermore, the clonogenic progenitor cell assay (CFU assay) demonstrated that the number of colony-forming cells had increased to levels 2-fold higher than those of mock-transduced cells after 1 week of culture, thereby augmenting the presence of a significant number of stem/progenitor cells in the selected cell population. However, in our experiments, HOXB4-overexpressing murine HSCs did not show any repopulating advantage in transplanted recipient mice over control construct-transduced HSCs. These results indicate that selective expansion of gp91phox gene-modified HSCs can be induced by the HOXB4 transcription factor ex vivo but not in vivo. This is possibly dependent on HOXB4 expression levels, which are too low in vivo to achieve selection. The second strategy made use of a chemically inducible dimerizer system consisting of the therapeutic gene gp91phox and a fusion protein, containing sequences from a growth factor receptor signalling domain (epidermal growth factor receptor, EGFR, or prolactin receptor, PrlR) and the drug binding protein FKBP12, as the selection cassette. This strategy aimed to allow inducible selection that could be easily switched off. The activity of these fusion proteins is controlled through the small molecular dimerizer AP20187. Transduction of BaF/3 cells with lentiviral vectors expressing the EGFR construct induced proliferation and led to complete selection within 18 days (99%). However, removing AP20187 could not turn off proliferation. This construct is, therefore, not suitable as a selection cassette for the expansion of gene-modified HSCs due to its oncogenic potential. Transduction of the construct containing the intracellular domain of PrlR caused significant selective expansion of AP20187-treated BaF/3 cells. Following expression in cells, the fusion protein, which lacks membrane-anchoring sequences, mainly localized to the cytoplasm. Evidence was found to indicate that activated STAT5 might be responsible for this effect. Upon expression of the prolactin construct, phosphorylation of STAT5 and its DNA-binding activity to a ß-casein promoter sequence was strongly increased. Importantly, the induced proliferation was reversible after removal of AP20187. Transduced Sca1+ bone marrow cells obtained from C57BL/6-CD45.1 mice could be expanded about 20–100-fold ex vivo in the presence of AP20187 and mSCF without losing progenitor cell features and the capability to contribute to all lineages of the haematopoietic system. To exclude oncogenic outgrowth of one single clone, the polyclonality of selected cells was proven by ligation-mediated PCR (LM-PCR) analysis. In mouse transplantation experiments, ex vivo-expanded cells repopulated the bone marrow of lethally irradiated mice suggesting that the ex vivo expansion took place at the level of haematopoietic stem and/or progenitor cells. Genomic gp91phox sequences were detected in the bone marrow, spleen and peripheral blood cells of transplanted animals, indicating that gp91phox-containing cells most likely contributed to the reconstitution of haematopoiesis in these mice.
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by impaired antimicrobial activity in phagocytic cells. As a monogenic disease affecting the hematopoietic system, CGD is amenable to gene therapy. Indeed in a phase I/II clinical trial, we demonstrated a transient resolution of bacterial and fungal infections. However, the therapeutic benefit was compromised by the occurrence of clonal dominance and malignant transformation demanding alternative vectors with equal efficacy but safety-improved features. In this work we have developed and tested a self-inactivating (SIN) gammaretroviral vector (SINfes.gp91s) containing a codon-optimized transgene (gp91(phox)) under the transcriptional control of a myeloid promoter for the gene therapy of the X-linked form of CGD (X-CGD). Gene-corrected cells protected X-CGD mice from Aspergillus fumigatus challenge at low vector copy numbers. Moreover, the SINfes.gp91s vector generates substantial amounts of superoxide in human cells transplanted into immunodeficient mice. In vitro genotoxicity assays and longitudinal high-throughput integration site analysis in transplanted mice comprising primary and secondary animals for 11 months revealed a safe integration site profile with no signs of clonal dominance.