Refine
Year of publication
Document Type
- Article (14)
- Conference Proceeding (2)
- Preprint (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
Institute
- Physik (14)
- Medizin (4)
- Sportwissenschaften (2)
Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs.
Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel.
Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy.
Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.
Time resolved measurements of the biased disk effect at an Electron Cyclotron Resonance Ion Source
(1999)
First results are reported from time resolved measurements of ion currents extracted from the Frankfurt 14 GHz Electron Cyclotron Resonance Ion Source with pulsed biased-disk voltage. It was found that the ion currents react promptly to changes of the bias. From the experimental results it is concluded that the biased disk effect is mainly due to improvements of the extraction conditions for the source and/or an enhanced transport of ions into the extraction area. By pulsing the disk voltage, short current pulses of highly charged ions can be generated with amplitudes significantly higher than the currents obtained in continuous mode.
A central motivation for the development of x-ray free-electron lasers has been the prospect of time-resolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction—where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within—can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward time-resolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.
In dieser Arbeit wird die Elektronenemission aus langsamen He 2 HeStößen, d.h. bei Stoßenergien unterhalb von 25 keV/u, experimentell untersucht. Dabei wird auf den Vergleich der Einfachionisation (He 2 He ! He 2 He e \Gamma ) mit der Transferionisation (He 2 He ! He He 2 e \Gamma ) besonderes Gewicht gelegt. Die hier verwendete Meßtechnik ist von verschiedenen Arbeitsgruppen in den letzten Jahren entwickelt worden und unter dem Schlagwort COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) [1, 2, 3] in der Literatur zu finden. Bei COLTRIMS werden die bei einer Reaktion in einem kalten Gastarget gebildeten Ionen in einem schwachen elektrischen Feld abgesaugt. Durch den ortsaufgelösten Nachweis und die Messung der Flugzeit von der Targetzone bis zum Detektor kann die Anfangsbedingung der Bewegung im Feld, d.h. der Vektor des auf das Targetatom übertragenen Impulses, berechnet werden. Diese Methode kommt ohne Blenden aus, so daß im relevanten Teil des Phasenraumes 4ß Raumwinkel erreicht werden. Der Nachweis des Elektrons erfolgt nach demselben Prinzip, jedoch stößt man dabei an die Grenzen der Flugzeitauflösung. Deshalb wurden in allen früheren Experimenten zu ähnlichen Reaktionen [4, 5, 6, 7, 8, 9] nur zwei der drei Impulskomponenten des Elektrons bestimmt. Die Konzipierung eines Spektrometers, welches in der Lage ist, den relevanten Phasenraum lückenlos zu erfassen und dabei alle drei Impulskomponenten der Elektronen zu bestimmen, war der wesentliche Teil der apparativen Entwicklung. Das durchgeführte Experiment ist nicht nur kinematisch vollständig, sondern erlaubt durch Anwendung des Energieerhaltungssatzes auch die Bestimmung der Schale, in der das Elektron im Endzustand gebunden ist. Die beiden oben genannten Reaktionen können somit getrennt nach Ereignissen mit und ohne Anregung untersucht werden, d.h., es wurden gleichzeitig vier verschiedene Ionisationskanäle vermessen. Für den Ionisationsmechanismus bei Stößen mit einer Projektilgeschwindigkeit unterhalb der klassischen Bahngeschwindigkeit der Elektronen hat sich in den letzten Jahren der Begriff ''Sattelpunkt''Prozeß durchgesetzt [10]. Quantenmechanische Beschreibungen für Einelektronensysteme, wie das Stoßsystem p H, wurden u.a. mit der semiklassischen GekoppelteKanäleMethode [11] in einem speziellen Basissatz [12, 13] und der ''HiddenCrossings''Theorie [14, 15] gegeben. Beide Modelle beschreiben das System aus Projektil und Target als Quasimolekül. Si sind lediglich in der Lage, die groben Strukturen in den Spektren zu erklären. Das gewählte Stoßsystem He 2 He, welches zwei Elektronen besitzt, erlaubt die Untersuchung von Korrelationseffekten. Die Messungen haben ergeben, daß die Impulsverteilung des emittierten Elektrons stark davon abhängt, wo und in welchem Bindungszustand das zweite Elektron nachgewiesen wird. Die gleiche Kernladung von Projektil und Target bedingt, da alle Eigenzustände des gebildeten Quasimoleküls die Symmetrie des Hamiltonoperators gegenüber Raumspiegelung besitzen, und durch diese Spiegeloperation gehen die Endzustände der Transferionisation und der Einfachionisation ineinander über. Durch die gleichzeitige Messung der differentiellen Wirkungsquerschnitte der verschiedenen Reaktionskanäle und deren Vergleich erhält man Einblick in die zugrundeliegenden Prozesse.
The KER for electron capture of vibrational cooled HeH+ and H3 + ions at 20 keV from residual gas atoms has been measured in the Frankfurt Low Energy Storage Ring (FLSR). At a vacuum in the order of few 10-11 mbar, this residual gas consists to 99% of H2 molecules. For the identification of the recoil products of this reaction, a recoil spectrometer (with an MCP-detector with position and time sensitive read out) was installed at one of the focus points (IP) in the FLSR. The planned extension of this set up by a gas target to a full COLTRIMS reaction microscope will be discussed.
When a very strong light field is applied to a molecule an electron can be ejected by tunneling. In order to quantify the time-resolved dynamics of this ionization process, the concept of the Wigner time delay can be used. The properties of this process can depend on the tunneling direction relative to the molecular axis. Here, we show experimental and theoretical data on the Wigner time delay for tunnel ionization of H2 molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the emitted electrons, which occur due to spatial shifts of the electrons’ birth positions after tunneling. Our work provides therefore an intuitive perspective towards the Wigner time delay in strong-field ionization.
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron–electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
Chirality is omnipresent in living nature. On the single molecule level, the response of a chiral species to a chiral probe depends on their respective handedness. A prominent example is the difference in the interaction of a chiral molecule with left or right circularly polarized light. In the present study, we show by Coulomb explosion imaging that circularly polarized light can also induce a chiral fragmentation of a planar and thus achiral molecule. The observed enantiomer strongly depends on the orientation of the molecule with respect to the light propagation direction and the helicity of the ionizing light. This finding might trigger new approaches to improve laser-driven enantioselective chemical synthesis.