Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- OEP80 (1)
- Toc75-V (1)
- b-barrel membrane protein (1)
- chloroplast envelopes (1)
- chloroplasts (1)
- ectosomes (1)
- exosomes (1)
- extracellular vesicles (1)
- guidelines (1)
- lipid to protein ratio (1)
Institute
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
The insertion of membrane proteins requires proteinaceous complexes in the cytoplasm, the membrane, and the lumen of organelles. Most of the required complexes have been described, while the components for insertion of β‐barrel‐type proteins into the outer membrane of chloroplasts remain unknown. The same holds true for the signals required for the insertion of β‐barrel‐type proteins. At present, only the processing of Toc75‐III, the β‐barrel‐type protein of the central chloroplast translocon with an atypical signal, has been explored in detail. However, it has been debated whether Toc75‐V/ outer envelope protein 80 (OEP80), a second protein of the same family, contains a signal and undergoes processing. To substantiate the hypothesis that Toc75‐V/OEP80 is processed as well, we reinvestigated the processing in a protoplast‐based assay as well as in native membranes. Our results confirm the existence of a cleavable segment. By protease protection and pegylation, we observed intermembrane space localization of the soluble N‐terminal domain. Thus, Toc75‐V contains a cleavable N‐terminal signal and exposes its polypeptide transport‐associated domains to the intermembrane space of plastids, where it likely interacts with its substrates.
Organelles are surrounded by membranes with a distinct lipid and protein composition. While it is well established that lipids affect protein functioning and vice versa, it has been only recently suggested that elevated membrane protein concentrations may affect the shape and organization of membranes. We therefore analyzed the effects of high chloroplast envelope protein concentrations on membrane structures using an in vivo approach with protoplasts. Transient expression of outer envelope proteins or protein domains such as CHUP1-TM–GFP, outer envelope protein of 7 kDa–GFP, or outer envelope protein of 24 kDa–GFP at high levels led to the formation of punctate, circular, and tubular membrane protrusions. Expression of inner membrane proteins such as translocase of inner chloroplast membrane 20, isoform II (Tic20-II)–GFP led to membrane protrusions including invaginations. Using increasing amounts of DNA for transfection, we could show that the frequency, size, and intensity of these protrusions increased with protein concentration. The membrane deformations were absent after cycloheximide treatment. Co-expression of CHUP1-TM–Cherry and Tic20-II–GFP led to membrane protrusions of various shapes and sizes including some stromule-like structures, for which several functions have been proposed. Interestingly, some structures seemed to contain both proteins, while others seem to contain one protein exclusively, indicating that outer and inner envelope dynamics might be regulated independently. While it was more difficult to investigate the effects of high expression levels of membrane proteins on mitochondrial membrane shapes using confocal imaging, it was striking that the expression of the outer membrane protein Tom20 led to more elongate mitochondria. We discuss that the effect of protein concentrations on membrane structure is possibly caused by an imbalance in the lipid to protein ratio and may be involved in a signaling pathway regulating membrane biogenesis. Finally, the observed phenomenon provides a valuable experimental approach to investigate the relationship between lipid synthesis and membrane protein expression in future studies.