Refine
Document Type
- Article (31)
Has Fulltext
- yes (31)
Is part of the Bibliography
- no (31)
Keywords
- prostate cancer (9)
- radical prostatectomy (6)
- Adenocarcinoma (3)
- Squamous cell carcinoma (3)
- Variant histology (3)
- survival (3)
- systematic biopsy (3)
- BPH (2)
- CSM (2)
- Cancer-specific mortality (2)
Institute
- Medizin (31)
Purpose: To compare Cancer-specific mortality (CSM) in patients with Squamous cell carcinoma (SCC) vs. non-SCC penile cancer, since survival outcomes may differ between histological subtypes. Methods: Within the Surveillance, Epidemiology and End Results database (2004–2016), penile cancer patients of all stages were identified. Temporal trend analyses, cumulative incidence and Kaplan–Meier plots, multivariable Cox regression and Fine and Gray competing-risks regression analyses tested for CSM differences between non-SCC vs. SCC penile cancer patients. Results: Of 4,120 eligible penile cancer patients, 123 (3%) harbored non-SCC vs. 4,027 (97%) SCC. Of all non-SCC patients, 51 (41%) harbored melanomas, 42 (34%) basal cell carcinomas, 10 (8%) adenocarcinomas, eight (6.5%) skin appendage malignancies, six (5%) epithelial cell neoplasms, two (1.5%) neuroendocrine tumors, two (1.5%) lymphomas, two (1.5%) sarcomas. Stage at presentation differed between non-SCC vs. SCC. In temporal trend analyses, non-SCC diagnoses neither decreased nor increased over time (p > 0.05). After stratification according to localized, locally advanced, and metastatic stage, no CSM differences were observed between non-SCC vs. SCC, with 5-year survival rates of 11 vs 11% (p = 0.9) for localized, 33 vs. 37% (p = 0.4) for locally advanced, and 1-year survival rates of 37 vs. 53% (p = 0.9) for metastatic penile cancer, respectively. After propensity score matching for patient and tumor characteristics and additional multivariable adjustment, no CSM differences between non-SCC vs. SCC were observed. Conclusion: Non-SCC penile cancer is rare. Although exceptions exist, on average, non-SCC penile cancer has comparable CSM as SCC penile cancer patients, after stratification for localized, locally invasive, and metastatic disease.
Background: Number of positive prostate biopsy cores represents a key determinant between high versus very high-risk prostate cancer (PCa). We performed a critical appraisal of the association between the number of positive prostate biopsy cores and CSM in high versus very high-risk PCa. Methods: Within Surveillance, Epidemiology, and End Results database (2010–2016), 13,836 high versus 20,359 very high-risk PCa patients were identified. Discrimination according to 11 different positive prostate biopsy core cut-offs (≥2–≥12) were tested in Kaplan–Meier, cumulative incidence, and multivariable Cox and competing risks regression models. Results: Among 11 tested positive prostate biopsy core cut-offs, more than or equal to 8 (high-risk vs. very high-risk: n = 18,986 vs. n = 15,209, median prostate-specific antigen [PSA]: 10.6 vs. 16.8 ng/ml, <.001) yielded optimal discrimination and was closely followed by the established more than or equal to 5 cut-off (high-risk vs. very high-risk: n = 13,836 vs. n = 20,359, median PSA: 16.5 vs. 11.1 ng/ml, p < .001). Stratification according to more than or equal to 8 positive prostate biopsy cores resulted in CSM rates of 4.1 versus 14.2% (delta: 10.1%, multivariable hazard ratio: 2.2, p < .001) and stratification according to more than or equal to 5 positive prostate biopsy cores with CSM rates of 3.7 versus 11.9% (delta: 8.2%, multivariable hazard ratio: 2.0, p < .001) in respectively high versus very high-risk PCa. Conclusions: The more than or equal to 8 positive prostate biopsy cores cutoff yielded optimal results. It was very closely followed by more than or equal to 5 positive prostate biopsy cores. In consequence, virtually the same endorsement may be made for either cutoff. However, more than or equal to 5 positive prostate biopsy cores cutoff, based on its existing wide implementation, might represent the optimal choice.
Background: To test for rates of other cause mortality (OCM) and cancer-specific mortality (CSM) in elderly prostate cancer (PCa) patients treated with the combination of radical prostatectomy (RP) and external beam radiation therapy (EBRT) versus RP alone, since elderly PCa patients may be over-treated. Methods: Within the Surveillance, Epidemiology and End Results database (2004–2016), cumulative incidence plots, after propensity score matching for cT-stage, cN-stage, prostate specific antigen, age and biopsy Gleason score, and multivariable competing risks regression models (socioeconomic status, pathological Gleason score) addressed OCM and CSM in patients (70–79, 70–74, and 75–79 years) treated with RP and EBRT versus RP alone. Results: Of 18,126 eligible patients aged 70–79 years, 2520 (13.9%) underwent RP and EBRT versus 15,606 (86.1%) RP alone. After propensity score matching, 10-year OCM rates were respectively 27.9 versus 20.3% for RP and EBRT versus RP alone (p < .001), which resulted in a multivariable HR of 1.4 (p < .001). Moreover, 10-year CSM rates were respectively 13.4 versus 5.5% for RP and EBRT versus RP alone. In subgroup analyses separately addressing 70–74 year old and 75–79 years old PCa patients, 10-year OCM rates were 22.8 versus 16.2% and 39.5 versus 24.0% for respectively RP and EBRT versus RP alone patients (all p < .001). Conclusion: Elderly patients treated with RP and EBRT exhibited worrisome rates of OCM. These higher than expected OCM rates question the need for combination therapy (RP and EBRT) in elderly PCa patients and indicate the need for better patient selection, when combination therapy is contemplated.
Objectives: Bladder neck contracture (BNC) is a bothersome complication following endoscopic treatment for benign prostatic hyperplasia (BPH). The objective of our study was to give a more realistic insight into contemporary endoscopic BNC treatment and to evaluate and identify risk factors associated with inferior outcome. Material and Methods: We identified patients who underwent transurethral treatment for BNC secondary to previous endoscopic therapy for BPH between March 2009 and October 2016. Patients with vesico-urethral anastomotic stenosis after radical prostatectomy were excluded. Digital charts were reviewed for re-admissions and re-visits at our institutions and patients were contacted personally for follow-up. Our non-validated questionnaire assessed previous urologic therapies (including radiotherapy, endoscopic, and open surgery), time to eventual further therapy in case of BNC recurrence, and the modality of recurrence management. Results: Of 60 patients, 49 (82%) and 11 (18%) underwent transurethral bladder neck resection and incision, respectively. Initial BPH therapy was transurethral resection of the prostate (TURP) in 54 (90%) and holmium laser enucleation of the prostate (HoLEP) in six (10%) patients. Median time from prior therapy was 8.5 (IQR 5.3–14) months and differed significantly in those with (6.5 months; IQR 4–10) and those without BNC recurrence (10 months; IQR 6–20; p = 0.046). Thirty-three patients (55%) underwent initial endoscopic treatment, and 27 (45%) repeated endoscopic treatment for BNC. In initially-treated patients, time since BPH surgery differed significantly between those with a recurrence (median 7.5 months; IQR 6–9) compared to those treated successfully (median 12 months; IQR 9–25; p = 0.01). In patients with repeated treatment, median time from prior BNC therapy did not differ between those with (4.5 months; IQR 2–12) and those without a recurrence (6 months; IQR 6–10; p = 0.6). Overall, BNC treatment was successful in 32 patients (53%). The observed success rate of BNC treatment was significantly higher after HoLEP compared to TURP (100% vs. 48%; p = 0.026). Type of BNC treatment, number of BNC treatment, and age at surgery did not influence the outcome. Conclusions: A longer time interval between previous BPH therapy and subsequent BNC incidence seems to favorably affect treatment success of endoscopic BNC treatment, and transurethral resection and incision appear equally effective. Granted the relatively small sample size, BNC treatment success seems to be higher after HoLEP compared to TURP, which warrants validation in larger cohorts.
Introduction: Over the last decade, multiple clinical trials demonstrated improved survival after chemotherapy for metastatic prostate cancer (mPCa). However, real-world data validating this effect within large-scale epidemiological data sets are scarce. We addressed this void. Materials and Methods: Men with de novo mPCa were identified and systemic chemotherapy status was ascertained within the Surveillance, Epidemiology, and End Results database (2004–2016). Patients were divided between historical (2004–2013) versus contemporary (2014–2016). Chemotherapy rates were plotted over time. Kaplan–Meier plots and Cox regression models with additional multivariable adjustments addressed overall and cancer-specific mortality. All tests were repeated in propensity-matched analyses. Results: Overall, 19,913 patients had de novo mPCa between 2004 and 2016. Of those, 1838 patients received chemotherapy. Of 1838 chemotherapy-exposed patients, 903 were historical, whereas 905 were contemporary. Chemotherapy rates increased from 5% to 25% over time. Median overall survival was not reached in contemporary patients versus was 24 months in historical patients (hazard ratio [HR]: 0.55, p < 0.001). After propensity score matching and additional multivariable adjustment (age, prostate-specific antigen, GGG, cT-stage, cN-stage, cM-stage, and local treatment) a HR of 0.55 (p < 0.001) was recorded. Analyses were repeated for cancer-specific mortality after adjustment for other cause mortality in competing risks regression models and recorded virtually the same findings before and after propensity score matching (HR: 0.55, p < 0.001). Conclusions: In mPCa patients, chemotherapy rates increased over time. A concomitant increase in survival was also recorded.
Background: To analyze postoperative, in-hospital, complication rates in patients with organ transplantation before radical prostatectomy (RP). Methods: From National Inpatient Sample (NIS) database (2000–2015) prostate cancer patients treated with RP were abstracted and stratified according to prior organ transplant versus nontransplant. Multivariable logistic regression models predicted in-hospital complications. Results: Of all eligible 202,419 RP patients, 216 (0.1%) underwent RP after prior organ transplantation. Transplant RP patients exhibited higher proportions of Charlson comorbidity index ≥2 (13.0% vs. 3.0%), obesity (9.3% vs. 5.6%, both p < 0.05), versus to nontransplant RP. Of transplant RP patients, 96 underwent kidney (44.4%), 44 heart (20.4%), 40 liver (18.5%), 30 (13.9%) bone marrow, <11 lung (<5%), and <11 pancreatic (<5%) transplantation before RP. Within transplant RP patients, rates of lymph node dissection ranged from 37.5% (kidney transplant) to 60.0% (bone marrow transplant, p < 0.01) versus 51% in nontransplant patients. Regarding in-hospital complications, transplant patients more frequently exhibited, diabetic (31.5% vs. 11.6%, p < 0.001), major (7.9% vs. 2.9%) cardiac complications (3.2% vs. 1.2%, p = 0.01), and acute kidney failure (5.1% vs. 0.9%, p < 0.001), versus nontransplant RP. In multivariable logistic regression models, transplant RP patients were at higher risk of acute kidney failure (odds ratio [OR]: 4.83), diabetic (OR: 2.81), major (OR: 2.39), intraoperative (OR: 2.38), cardiac (OR: 2.16), transfusion (OR: 1.37), and overall complications (1.36, all p < 0.001). No in-hospital mortalities were recorded in transplant patients after RP. Conclusions: Of all transplants before RP, kidney ranks first. RP patients with prior transplantation have an increased risk of in-hospital complications. The highest risk, relative to nontransplant RP patients appears to acute kidney failure.
Introduction and Objective: Identifying patients that benefit from cisplatin-based adjuvant chemotherapy is a major issue in the management of muscle-invasive bladder cancer (MIBC). The purpose of this study is to correlate “luminal” and “basal” type protein expression with histological subtypes, to investigate the prognostic impact on survival after adjuvant chemotherapy and to define molecular consensus subtypes of “double negative” patients (i.e., without expression of CK5/6 or GATA3).
Materials and Methods: We performed immunohistochemical (IHC) analysis of CK5/6 and GATA3 for surrogate molecular subtyping in 181 MIBC samples. The mRNA expression profiles for molecular consensus classification were determined in CK5/6 and GATA3 (double) negative cases using a transcriptome panel with 19.398 mRNA targets (HTG Molecular Diagnostics). Data of 110 patients undergoing radical cystectomy were available for survival analysis.
Results: The expression of CK5/6 correlated with squamous histological subtype (96%) and expression of GATA3 was associated with micropapillary histology (100%). In the multivariate Cox-regression model, patients receiving adjuvant chemotherapy had a significant survival benefit (hazard ratio [HR]: 0.19 95% confidence interval [CI]: 0.1–0.4, p < 0.001) and double-negative cases had decreased OS (HR: 4.07; 95% CI: 1.5–10.9, p = 0.005). Double negative cases were classified as NE-like (30%), stroma-rich (30%), and Ba/Sq (40%) consensus molecular subtypes and displaying different histological subtypes.
Radiotherapy is a frequently used treatment for prostate cancer. It does not only causes the intended damage to cancer cells, but also affects healthy surrounding tissue. As a result radiation-induced urethral strictures occur in 2.2% of prostate cancer patients. Management of urethral strictures is challenging due to the presence of poor vascularized tissue for reconstruction and the proximity of the sphincter, which can impair the functional outcome. This review provides a literature overview of risk factors, diagnostics and management of radiation-induced urethral strictures.
Objective: To investigate the value of standard [digital rectal examination (DRE), PSA] and advanced (mpMRI, prostate biopsy) clinical evaluation for prostate cancer (PCa) detection in contemporary patients with clinical bladder outlet obstruction (BOO) scheduled for Holmium laser enucleation of the prostate (HoLEP).
Material and Methods: We retrospectively analyzed 397 patients, who were referred to our tertiary care laser center for HoLEP due to BOO between 11/2017 and 07/2020. Of those, 83 (20.7%) underwent further advanced clinical PCa evaluation with mpMRI and/or prostate biopsy due to elevated PSA and/or lowered PSA ratio and/or suspicious DRE. Logistic regression and binary regression tree models were applied to identify PCa in BOO patients.
Results: An mpMRI was conducted in 56 (66%) of 83 patients and revealed PIRADS 4/5 lesions in 14 (25%) patients. Subsequently, a combined systematic randomized and MRI-fusion biopsy was performed in 19 (23%) patients and revealed in PCa detection in four patients (5%). A randomized prostate biopsy was performed in 31 (37%) patients and revealed in PCa detection in three patients (4%). All seven patients (9%) with PCa detection underwent radical prostatectomy with 29% exhibiting non-organ confined disease. Incidental PCa after HoLEP (n = 76) was found in nine patients (12%) with advanced clinical PCa evaluation preoperatively. In univariable logistic regression analyses, PSA, fPSA ratio, and PSA density failed to identify patients with PCa detection. Conversely, patients with a lower International Prostate Symptom Score (IPSS) and PIRADs 4/5 lesion in mpMRI were at higher risk for PCa detection. In multivariable adjusted analyses, PIRADS 4/5 lesions were confirmed as an independent risk factor (OR 9.91, p = 0.04), while IPSS did not reach significance (p = 0.052).
Conclusion: In advanced clinical PCa evaluation mpMRI should be considered in patients with elevated total PSA or low fPSA ratio scheduled for BOO treatment with HoLEP. Patients with low IPSS or PIRADS 4/5 lesions in mpMRI are at highest risk for PCa detection. In patients with a history of two or more sets of negative prostate biopsies, advanced clinical PCa evaluation might be omitted.
Background: Recently, an increase in the rates of high-risk prostate cancer (PCa) was reported. We tested whether the rates of and low, intermediate, high and very high-risk PCa changed over time. We also tested whether the number of prostate biopsy cores contributed to changes rates over time. Methods: Within the Surveillance, Epidemiology and End Results (SEER) database (2010–2015), annual rates of low, intermediate, high-risk according to traditional National Comprehensive Cancer Network (NCCN) and high versus very high-risk PCa according to Johns Hopkins classification were tabulated without and with adjustment for the number of prostate biopsy cores. Results: In 119,574 eligible prostate cancer patients, the rates of NCCN low, intermediate, and high-risk PCa were, respectively, 29.7%, 47.8%, and 22.5%. Of high-risk patients, 39.6% and 60.4% fulfilled high and very high-risk criteria. Without adjustment for number of prostate biopsy cores, the estimated annual percentage changes (EAPC) for low, intermediate, high and very high-risk were respectively −5.5% (32.4%–24.9%, p < .01), +0.5% (47.6%–48.4%, p = .09), +4.1% (8.2%–9.9%, p < .01), and +8.9% (11.8%–16.9%, p < .01), between 2010 and 2015. After adjustment for number of prostate biopsy cores, differences in rates over time disappeared and ranged from 29.8%–29.7% for low risk, 47.9%–47.9% for intermediate risk, 8.9%–9.0% for high-risk, and 13.6%–13.6% for very high-risk PCa (all p > .05). Conclusions: The rates of high and very high-risk PCa are strongly associated with the number of prostate biopsy cores, that in turn may be driven by broader use magnetic resonance imaging (MRI).