### Refine

#### Year of publication

#### Document Type

- Working Paper (89)
- Conference Proceeding (4)
- Article (3)

#### Language

- English (96)

#### Has Fulltext

- yes (96)

#### Is part of the Bibliography

- no (96)

#### Keywords

- Lambda-Kalkül (17)
- Formale Semantik (9)
- Operationale Semantik (8)
- lambda calculus (8)
- Programmiersprache (7)
- concurrency (6)
- functional programming (6)
- Nebenläufigkeit (5)
- pi-calculus (5)
- semantics (5)

#### Institute

- Informatik (96)

We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and must-convergence in arbitrary contexts, and adequacy of translations, i.e., the reﬂection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extension.

We present a higher-order call-by-need lambda calculus enriched with constructors, case-expressions, recursive letrec-expressions, a seq-operator for sequential evaluation and a non-deterministic operator amb that is locally bottom-avoiding. We use a small-step operational semantics in form of a single-step rewriting system that defines a (nondeterministic) normal order reduction. This strategy can be made fair by adding resources for bookkeeping. As equational theory we use contextual equivalence, i.e. terms are equal if plugged into any program context their termination behaviour is the same, where we use a combination of may- as well as must-convergence, which is appropriate for non-deterministic computations. We show that we can drop the fairness condition for equational reasoning, since the valid equations w.r.t. normal order reduction are the same as for fair normal order reduction. We evolve different proof tools for proving correctness of program transformations, in particular, a context lemma for may- as well as mustconvergence is proved, which restricts the number of contexts that need to be examined for proving contextual equivalence. In combination with so-called complete sets of commuting and forking diagrams we show that all the deterministic reduction rules and also some additional transformations preserve contextual equivalence.We also prove a standardisation theorem for fair normal order reduction. The structure of the ordering <=c a is also analysed: Ω is not a least element, and <=c already implies contextual equivalence w.r.t. may-convergence.

Motivated by the question of correctness of a specific implementation of concurrent buffers in the lambda calculus with futures underlying Alice ML, we prove that concurrent buffers and handled futures can correctly encode each other. Correctness means that our encodings preserve and reflect the observations of may- and must-convergence. This also shows correctness wrt. program semantics, since the encodings are adequate translations wrt. contextual semantics. While these translations encode blocking into queuing and waiting, we also provide an adequate encoding of buffers in a calculus without handles, which is more low-level and uses busy-waiting instead of blocking. Furthermore we demonstrate that our correctness concept applies to the whole compilation process from high-level to low-level concurrent languages, by translating the calculus with buffers, handled futures and data constructors into a small core language without those constructs.

The paper proposes a variation of simulation for checking and proving contextual equivalence in a non-deterministic call-by-need lambda-calculus with constructors, case, seq, and a letrec with cyclic dependencies. It also proposes a novel method to prove its correctness. The calculus' semantics is based on a small-step rewrite semantics and on may-convergence. The cyclic nature of letrec bindings, as well as non-determinism, makes known approaches to prove that simulation implies contextual equivalence, such as Howe's proof technique, inapplicable in this setting. The basic technique for the simulation as well as the correctness proof is called pre-evaluation, which computes a set of answers for every closed expression. If simulation succeeds in finite computation depth, then it is guaranteed to show contextual preorder of expressions.

The paper proposes a variation of simulation for checking and proving contextual equivalence in a non-deterministic call-by-need lambda-calculus with constructors, case, seq, and a letrec with cyclic dependencies. It also proposes a novel method to prove its correctness. The calculus’ semantics is based on a small-step rewrite semantics and on may-convergence. The cyclic nature of letrec bindings, as well as nondeterminism, makes known approaches to prove that simulation implies contextual equivalence, such as Howe’s proof technique, inapplicable in this setting. The basic technique for the simulation as well as the correctness proof is called pre-evaluation, which computes a set of answers for every closed expression. If simulation succeeds in finite computation depth, then it is guaranteed to show contextual preorder of expressions.

This paper proves several generic variants of context lemmas and thus contributes to improving the tools for observational semantics of deterministic and non-deterministic higher-order calculi that use a small-step reduction semantics. The generic (sharing) context lemmas are provided for may- as well as two variants of must-convergence, which hold in a broad class of extended process- and extended lambda calculi, if the calculi satisfy certain natural conditions. As a guide-line, the proofs of the context lemmas are valid in call-by-need calculi, in callby-value calculi if substitution is restricted to variable-by-variable and in process calculi like variants of the π-calculus. For calculi employing beta-reduction using a call-by-name or call-by-value strategy or similar reduction rules, some iu-variants of ciu-theorems are obtained from our context lemmas. Our results reestablish several context lemmas already proved in the literature, and also provide some new context lemmas as well as some new variants of the ciu-theorem. To make the results widely applicable, we use a higher-order abstract syntax that allows untyped calculi as well as certain simple typing schemes. The approach may lead to a unifying view of higher-order calculi, reduction, and observational equality.

We show on an abstract level that contextual equivalence in non-deterministic program calculi defined by may- and must-convergence is maximal in the following sense. Using also all the test predicates generated by the Boolean, forall- and existential closure of may- and must-convergence does not change the contextual equivalence. The situation is different if may- and total must-convergence is used, where an expression totally must-converges if all reductions are finite and terminate with a value: There is an infinite sequence of test-predicates generated by the Boolean, forall- and existential closure of may- and total must-convergence, which also leads to an infinite sequence of different contextual equalities.

Motivated by our experience in analyzing properties of translations between programming languages with observational semantics, this paper clarifies the notions, the relevant questions, and the methods, constructs a general framework, and provides several tools for proving various correctness properties of translations like adequacy and full abstractness. The presented framework can directly be applied to the observational equivalences derived from the operational semantics of programming calculi, and also to other situations, and thus has a wide range of applications.

Various concurrency primitives have been added to sequential programming languages, in order to turn them concurrent. Prominent examples are concurrent buffers for Haskell, channels in Concurrent ML, joins in JoCaml, and handled futures in Alice ML. Even though one might conjecture that all these primitives provide the same expressiveness, proving this equivalence is an open challenge in the area of program semantics. In this paper, we establish a first instance of this conjecture. We show that concurrent buffers can be encoded in the lambda calculus with futures underlying Alice ML. Our correctness proof results from a systematic method, based on observational semantics with respect to may and must convergence.

Reasoning about the correctness of program transformations requires a notion of program equivalence. We present an observational semantics for the concurrent lambda calculus with futures Lambda(fut), which formalizes the operational semantics of the programming language Alice ML. We show that natural program optimizations, as well as partial evaluation with respect to deterministic rules, are correct for Lambda(fut). This relies on a number of fundamental properties that we establish for our observational semantics.