Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
- Preprint (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Biological Sciences (1)
- Cell Biology (1)
- Molecular Biology (1)
- Omics (1)
- cell types (1)
- evolution (1)
- genetic markers (1)
- human neocortex (1)
- interneuron types (1)
- layer 1 interneurons (1)
Institute
Inhibitory interneurons govern virtually all computations in neocortical circuits and are in turn controlled by neuromodulation. While a detailed understanding of the distinct marker expression, physiology, and neuromodulator responses of different interneuron types exists for rodents and recent studies have highlighted the role of specific interneurons in converting rapid neuromodulatory signals into altered sensory processing during locomotion, attention, and associative learning, it remains little understood whether similar mechanisms exist in human neocortex. Here, we use whole-cell recordings combined with agonist application, transgenic mouse lines, in situ hybridization, and unbiased clustering to directly determine these features in human layer 1 interneurons (L1-INs). Our results indicate pronounced nicotinic recruitment of all L1-INs, whereas only a small subset co-expresses the ionotropic HTR3 receptor. In addition to human specializations, we observe two comparable physiologically and genetically distinct L1-IN types in both species, together indicating conserved rapid neuromodulation of human neocortical circuits through layer 1.
Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis.
Synaptic plasticity is the activity dependent alteration of the composition, form and strength of synapses and believed to be the underlying mechanism of learning and memory formation. While initial changes in synaptic transmission are caused by second messenger signaling pathways and rapid modifications in the cytoskeleton, to achieve stable and persistent changes at individual synapses, the expression of new mRNAs and proteins is required. The central dogma postulated that the cell body is the only source of newly synthesized proteins. For neurons, with their unique morphology, this meant that proteins would need be transported long distances, often hundreds of microns, to reach their destined locations in dendrites and at spines. To overcome this limitation, neurons have developed a strategy to regulate protein synthesis locally by distributing thousands of mRNAs into neuronal processes and use them for local protein synthesis. Ample research has demonstrated the importance of local protein synthesis to many forms of long-term synaptic plasticity. One potential regulator of mRNA localization and local translation in neurons are non-coding RNAs. Intensive work over the past decades has highlighted the importance of non-coding RNAs in many aspects of brain function. The aim of this thesis is to obtain a better understanding of the role of non-coding RNAs in synaptic function and plasticity in the murine hippocampus. For this, we focused our studies on two classes of non-coding RNAs.
In the first part of my thesis, I describe our efforts on characterizing circular RNAs, a novel and peculiar family of non-coding RNAs, in the murine hippocampus by combining high throughput RNA-Sequencing with fluorescence in situ hybridization. Furthermore, we investigated the mechanisms of circular RNA biogenesis in hippocampal neurons by temporarily inhibiting spliceosome activity and analyzing the differentially regulated circular RNAs.
Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs quickly associated with translating ribosomes in the cytoplasm and that this incorporation is independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (in response to oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing remote neuronal synapses a rapid solution to the relatively slow and energy-demanding requirement of nuclear ribosome biogenesis.
Circular RNAs (circRNAs), an important class of regulatory RNAs, have been shown to be the most prevalent in the brain compared with other tissues. However the processes governing their biogenesis in neurons are still elusive. Moreover, little is known about whether and how different biogenesis factors work in synchrony to generate neuronal circRNAs. To address this question, we pharmacologically inhibited the spliceosome and profiled rat neuronal circRNAs using RNA sequencing. We identified over 100 circRNAs that were up-regulated and a few circRNAs that were down-regulated upon spliceosome inhibition. Bioinformatic analysis revealed that up-regulated circRNAs possess significantly longer flanking introns compared with the un-changed circRNA population. Moreover, the flanking introns of up-regulated circRNAs harbor a higher number of distinct repeat sequences and more reverse complementary motifs compared with the unchanged circRNAs. Taken together, our data demonstrate that the biogenesis of circRNAs containing distinct intronic features becomes favored under conditions of limited spliceosome activity.