Refine
Year of publication
- 2006 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
The mammary gland is a perfect system to study the pathways regulating organogenesis during development of an individual. The proper development of the mammary gland requires a tight coordination of expression of many genes involved in proliferation and differentiation. The aim of this work was to identify novel genes and pathways involved in the development of the mammary gland and to find possible correlations between the signaling pathways and their downstream targets that are activated during proliferation and functional differentiation of mammary epithelial cells. In this study rapamycin has been used to inhibit the mTOR protein to analyze its role during mammary gland development. Further a genomic approach was used to identify genes differently expressed during this process. The analysis of the effects caused by the inhibition of the mTOR signaling pathway by using rapamycin on mammary epithelial cells for the first time demonstrate that mTOR plays central role in the coordination of pathways governing the proliferation and differentiation of epithelial cells during mammary gland development. More detailed analysis led to the identification of Id1 and Id2 as two major downstream effectors of the mTOR signaling pathway regulating proliferation and differentiation respectively. The genomics analysis revealed several interesting genes involved in the regulation of a proliferative or secretory phenotype of normal epithelial cells in vitro. Various genes identified by microarray analysis are of high interest and to determine their role in mammary gland development. Among the identified genes some contribute to process of proliferation like Nol5 and Kpna2, whereas other genes are required for proper functional differentiation such as Nkd2 and Cited4. Importantly, the mentioned candidate genes are also interesting regarding cancer development, since deregulation of their expression might contribute to tumor formation. The findings described in this work clearly contribute to our better understanding of the mTOR signaling pathway regulating expression of the genes involved in the development of mammary gland. In addition, the presented results should allow broadening our view of the events that contribute to breast cancer development and help to design better anticancer therapies in the future.