Refine
Year of publication
- 2003 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
One of the known apoptotic pathways in mammalian cells involves release of mitochondrial Cytochrome c into the cytosol. Cyt c then together with ATP or dATP induces a conformational change in the adaptator protein Apaf-1 (a homologue of the C. elegans CED4 protein) (Zou, Henzel et al. 1997), leading to its oligomerization and the recruitment of several pro-Casp-9 molecules. This protein complex assembly called "apoptosome" leads to the activation of Casp-9 which then initiates or amplifies the caspase cascade. The cell death program can be stalled at several points and we were interested in identifying new proteins inhibiting cell death downstream of Cyt c release. This thesis describes how I have screened a cDNA library derived from a pool of human breast carcinomas in a yeast-based survival screen, using the S. pombe yeast strain HC4 containing an inducible CED4 construct(James, Gschmeissner et al. 1997). The screen resulted in the identification of six proteins displaying cell death-inhibiting activity in S. pombe as well as anti-apoptotic potential in mammalian cells. Those six molecules were RoRet (Ruddy, Kronmal et al. 1997), Aven (Chau, Cheng et al. 2000), Fte-1/S3a (Kho, Wang et al. 1996), PGC2 (Padilla, Kaur et al. 2000; Goetze, Eilers et al. 2002), SAA1-2ß (Moriguchi, Terai et al. 2001) and FBP (Brockstedt, Rickers et al. 1998) of which I selected RoRet, Aven and Fte-1/S3a for further analysis. RoRet is a new anti-apoptotic molecule that can inhibit the mitochondrial pathway via its PRY-SPRY domain. RoRet does not seem to bind to Apaf-1, and does not co-localize with the activated Apaf-1/Caspase-9 complex. Aven was published to act as an anti-apoptotic protein and suggested to function via the recruitment of Bcl-XL to Apaf-1. This work shows that its C-terminal domain can bind to Apaf-1 and has a strong anti-apoptotic activity by itself. Moreover, Aven co-localizes with the activated Apaf-1/Caspase-9 complex suggesting that it is a component of the apoptosome. Furthermore, the expression of Aven is regulated in mammary glands during the pregnancy cycle. Fte-1/S3a has been already implicated in increased transformation capacity of v-Fos in fibroblasts (Kho and Zarbl 1992; Kho, Wang et al. 1996). This work shows that it has anti-apoptotic activity and can protect against Bak- and Apaf-1-induced apoptosis. It can bind directly to activated Apaf-1 at the linker domain between the WD40 repeats and the CED4-like domain, suggesting that it may protect by sequestering the activated Apaf-1 to some organelles whose nature remains to be determined. Moreover, expression studies on mRNA and protein level showed upregulation of Fte-1/S3a in colon, lung and kidney carcinoma. Hmgb1 (Flohr, Rogalla et al. 2001; Pasheva, Ugrinova et al. 2002; Stros, Ozaki et al. 2002) was identified during a survival screen performed with a NIH 3T3 mouse fibroblast cDNA library in a Bak-expressing yeast S. pombe strain. HMGB1 can protect against Bak-, UV-, FasL- and TRAIL-induced apoptosis. Significant overexpression of HMGB1 was found in breast and colon carcinoma, and elevated mRNA amounts were detected in uterus, colon and stomach carcinoma, suggesting that it may be a tumour marker (Brezniceanu et al., 2003).