Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
Institute
- Physik (6)
The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane (TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincident electron and fragment ion detection using cold target recoil ion momentum spectroscopy. The corresponding calculations were performed by means of the single center method within the relaxed-core Hartree–Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare the results for the differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl group by the trifluoromethyl group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in the literature.
The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane(TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincidentelectron and fragment ion detection using Cold Target Recoil Ion Momentum Spectroscopy. The corresponding calculations were performed by means of the Single Center method within the relaxed-core Hartree-Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare results for differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl-group by the trifluoromethyl-group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in literature.
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron–electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
The differential photoelectron circular dichroism (PECD) of O 1𝑠 photoelectrons of 𝑅-trifluoromethyloxirane enantiomers as a function of the photoelectron emission direction in the molecular frame of reference and the direction from which circularly polarized light hits the molecule, is studied experimentally and theoretically for different photoelectron kinetic energies. A coincident detection of the photoelectrons and two ionic molecular fragments, performed with cold target recoil ion momentum spectroscopy, allows us to determine the orientation of the molecule in the laboratory frame and to obtain in addition the molecular-frame photoelectron diffraction patterns. From these we deduce the differential PECD. For given molecular orientations and photoelectron emission directions, we observe a normalized PECD strength clearly beyond 50%. These observations are in agreement with respective relaxed-core Hartree-Fock calculations, performed by employing the single center method. The present results support our recent observation of a huge differential PECD in O 1𝑠 photoemission of the methyloxirane molecule.
Die vorliegende Arbeit präsentiert die wissenschaftlichen Erkenntnisse, welche im Rahmen dreier verschiedener Messreihen gewonnen wurden. Kernthema ist in allen Fällen die Ionisation von molekularem Wasserstoff mit Photonen.
Im Rahmen der Messung sollte eine 2014 veröffentlichte Vorhersage der theoretischen Physiker Vladislav V. Serov und Anatoli S. Kheifets im Experiment überprüft werden. Ihren Berechnungen zufolge kann ein sich langsam vom Wasserstoff Molekülion entfernendes Photoelektron durch sein elektrisches Feld das Mutterion polarisieren und dafür sorgen, dass beim anschließenden Aufbruch in ein Proton und ein Wasserstoffatom eine asymmetrische Emissionswinkelverteilung zu beobachten ist [SK14]. Diese Vorhersage konnte mit den Ergebnissen der hier vorgestellten Messung zweifelsfrei untermauert werden. Für drei verschiedene Photonenenergien, welche im relevanten Reaktionskanal Photoelektronenenergien von 1, 2 und 3 eV entsprechen, wurden die prognostizierten Symmetrien in den Messdaten herauspräpariert. Es zeigte sich, dass diese sowohl in qualitativer wie auch in quantitativer Hinsicht gut bis sehr gut mit den Vorhersagen übereinstimmen.
Im zweiten Teil dieser Arbeit wurde erneut die Dissoziationsreaktion, allerdings bei deutlich höheren Photonenenergien, untersucht. Ziel war es, den in Zusammenarbeit mit den Physikern um Fernando Martin gelungenen theoretischen Nachweis der Möglichkeit einer direkten Abbildung von elektronischen Wellenfunktionen auch im Experiment zu vollziehen. Der überwiegende Teil aller Veröffentlichungen im Vorfeld dieser Messung fokussierte sich bei den Untersuchungen der Wellenfunktion entweder auf die rein elektronischen Korrelationen - so zum Beispiel in Experimenten zur Ein-Photon-Doppelionisation, wo Korrelationen zwischen beiden beteiligten Elektronen den Prozess überhaupt erst möglich machen - oder aber auf den Einfluss, welchen das Molekülpotential auf das emittierte Elektron ausübt. Die wenigen Arbeiten, die sich bis heute an einer unmittelbaren Abbildung elektronischer Wellenfunktionen versuchten, gingen meist den im Vergleich zu dieser Arbeit umgekehrten Weg: Man untersuchte hier das Licht höherer Harmonischer, wie sie bei der lasergetriebenen Ionisation und anschließenden Rekombination eines Photoelektrons mit seinem Mutterion entstehen.
In dieser Arbeit wurde ein Ansatz präsentiert, der zwei überaus gängige und verbreitete Messtechniken geschickt kombiniert - Während das Photoelektron direkt nachgewiesen und seine wesentlichen Eigenschaften abgefragt werden, kann der quantenmechanische Zustand des zweiten, gebunden verbleibenden Elektrons über einen koinzident dazu geführten Nachweis des ionischen Reaktionsfragments bestimmt werden. Dieser Vorgang stützt sich wesentlich auf Berechnungen der Gruppe um Fernando Martín, welche eine Quantifizierung der Beiträge einzelner Zustande zum gesamten Wechselwirkungsquerschnitt dieser Reaktion erlauben. Diese unterscheiden sich je nach Energie der Fragmente signifikant, so dass über eine Selektion des untersuchten KER-Intervalls Kenntnis vom elektronischen Zustand des H2 +-Ions nach der Photoemission erlangt werden kann. Die experimentellen Daten unterstützen die Theorie von Martin et al. nicht nur mit verblüffend guter Übereinstimmung, die gemessenen Emissionswinkelverteilungen stehen darüber hinaus auch in sehr gutem Einklang mit ihren theoretisch berechneten Gegenstücken. Die Ergebnisse wurden zwischenzeitlich in der renommierten Fachzeitschrift Nature Communications veröffentlicht [WBM+17].
Die dritte Messreihe innerhalb dieser Arbeit beschäftigt sich mit der Photodoppelionisation von Wasserstoff. Im Rahmen des selben Experiments wie die weiter vorn beschriebene Dissoziationsmessung bei 400 eV Photonenenergie aufgenommen, belegen die Ergebnisse auf wunderbar anschauliche Art und Weise, dass die Natur in unserer Umgebung voller Prozesse ist, die ursprünglich als rein quantenmechanische Laborkonstrukte angesehen wurden. Es konnte zweifelsfrei gezeigt werden, dass die beiden Elektronen, die bei der Photodoppelionisation freigesetzt werden, als ein Quasiteilchen aufgefasst werden können. Sie befinden sich in einem verschränkten Zweiteilchenzustand, und nur eine koinzidente Messung beider Elektronen vermag es, Interferenzeffekte in ihren Impulsverteilungen sichtbar zu machen - betrachtet man beide hingegen individuell, so treten keinerlei derartige Phänomene auf. Es gelang dabei zudem, eine beispielhafte Übereinstimmung zwischen den gemessenen Daten und einer theoretischen Berechnung der Kollegen um Fernando Martín zu erreichen.